Записи пользователя: wpoms. (список заголовков)
23:58 

На прямой

wpoms.
Step by step ...


Три окружности $\omega_1,$ $\omega_2$ и $\omega_3$ пересекаются в точке $O.$ Попарно они пересекаются в точках $P(\omega_1\ \text{и}\ \omega_2),$ $R(\omega_2\ \text{и}\ \omega_3)$ и $S(\omega_1\ \text{и}\ \omega_3).$ На окружности $\omega_1$ выбрана точка $A,$ принадлежащая дуге $PS,$ не содержащей точку $O,$ прямая $AP$ повторно пересекает $\omega_2$ в точке $B,$ и прямая $AS$ повторно пересекает $\omega_3$ в точке $C.$ Докажите, что точки $B,$ $R$ un $C$ лежат на одной прямой.



@темы: Планиметрия

22:48 

Полюбуйтесь на них (то есть сравните)

wpoms.
Step by step ...


Какое из чисел $(\sqrt{7})^{\sqrt{5}}$ или $(\sqrt{5})^{\sqrt{7}}$ больше?



@темы: Школьный курс алгебры и матанализа

14:52 

Переходим в 11-й класс

wpoms.
Step by step ...


Сколько всего пятизначных чисел, у которых каждая следующая цифра больше предыдущей?



@темы: Комбинаторика

21:27 

Поехали в Ростов-на-Дону, а оказались в Ростове Великом

wpoms.
Step by step ...


Шесть туристов совершили несколько поездок в шесть стран, во время одной поездки каждый турист посещал только одну страну. Оказалось, что если выбрать любые три из этих стран, а также любых трех туристов, то, по крайней мере, один из них был в одной из этих стран. Чему равно наименьшее возможное общее количество поездок?



@темы: Дискретная математика

11:58 

Вокруг IMO 2018

wpoms.
Step by step ...
Через два дня участники увидят интересные задачи. Пожелаем им удачи!

Можно отметить, что в этом году наша страна уже заняла первое место читать дальше

Вопрос: Какое место займет Россия по набранным баллам?
1. Первое 
4  (50%)
2. Второе 
2  (25%)
3. Третье 
1  (12.5%)
4. Другое, напишу в комментариях 
1  (12.5%)
Всего: 8

@темы: Новости

23:16 

Вокруг мяча - 23

wpoms.
Step by step ...
Дан треугольник `ABC,` `/_A = 50^@,` `/_B = 60^@,` `/_C = 70^@.` точка `P` лежит на стороне `AB,` `P != A,` `P != B,` вписанная окружность треугольника `ABC` пересекается с вписанной окружностью треугольника `ACP` в точках `U` и `V` и пересекается с вписанной окружностью треугольника `BCP` в точках `X` и `Y,` прямые `UV` и `XY` пересекаются в точке `K.`
Найдите величину угла `UKX.`


@темы: Планиметрия

22:56 

Вокруг мяча - 22

wpoms.
Step by step ...
Отрезки `AB` и `CD` расположены в пространстве и могут не лежать в одной плоскости, точка `X` - середина `AB,` она не лежит на прямой `CD,` точка `Y` - середина `CD,` она не лежит на прямой `AB.` Докажите, что `2|XY| <= |AD| + |BC|.` В каком случае достигается равенство?


@темы: Стереометрия

22:27 

Вокруг мяча - 21

wpoms.
Step by step ...
Дан треугольник `ABC`, `r_A` - прямая, проходящая через середину `BC` и перпендикулярная биссектрисе `/_BAC,` `r_B` и `r_C` определены аналогично, `H` - ортоцентр `ABC,` `I` - центр вписанной окружности `ABC.` Пусть точки пересечения прямых `r_A`, `r_B`, `r_C` определяют некоторый треугольник. Докажите, что центр его описанной окружности делит пополам отрезок `HI.`


@темы: Планиметрия

22:11 

Вокруг мяча - 20

wpoms.
Step by step ...
Дан треугольник `ABC,` `/_ CAB = 2/_ ABC,` точка `D` лежит внутри треугольника `ABC,` `|AD| = |BD|,` `|CD| = |AC|.` Докажите, что `/_ ACB = 3/_ DCB.`


@темы: Планиметрия

20:35 

Вокруг мяча - 19

wpoms.
Step by step ...
Дан равнобедренный треугольник `ABC,` `AC=AB,` вписанная в него окружность касается в точках `X,` `Y,` `Z` его сторон `BC,` `CA,` `AB` соответственно, прямая `CZ` пересекает вписанную окружность в точках `L` y `Z,` прямая `YL` пересекает `BC` в точке `M.`
Докажите, что `XM=MC.`


@темы: Планиметрия

18:43 

Вокруг мяча - 18

wpoms.
Step by step ...
Дан выпуклый пятиугольник ABCDE, BC = CD = DE, каждая диагональ пятиугольника параллельна какой-то из его сторон.
Докажите, что (1) все углы пятиугольника равны, (2) все стороны пятиугольника равны.


@темы: Планиметрия

10:45 

Вокруг мяча - 17

wpoms.
Step by step ...
Окружности `omega_1,` `omega_2` пересекаются в точках `P,` `Q.` Прямая, проходящая через точку `P,` пересекает `omega_1,` `omega_2` в точках `A,` `B,` соответственно. Другая прямая, параллельная `AB,` пересекает `omega_1` в точках `D,` `F,` а `omega_2` пересекает в точках `E,` `C` так, что точки `E,` `F` лежат между `C,` `D.` Пусть `X` - точка пересечения `AD` и `BE,` а `Y` - точка пересечения `BC` и `AF.` Пусть точка `R` симметрична точке `P` относительно `CD.`
Докажите, что (1) `R` лежит на `XY.` (2) `PR` является биссектрисой угла `XPY.`


@темы: Планиметрия

09:34 

Вокруг мяча - 16

wpoms.
Step by step ...
Точки `A,` `B,` `C` и `D` лежат на прямой `l` в указанном порядке, `AB = BC,` `AC = CD,` окружность `omega` проходит через точки `B` и `D,` прямая, проходящая через точку `A,` пересекает `omega` в точках `P` и `Q,` точка `Q` расположена между `A` и `P,` точка `M` - середина отрезка `PD,` а точка `R` симметрична точке `Q` относительно прямой `l,` отрезки `PR` и `MB` пересекаются в точке `N.`
Докажите, что точки `P,` `M,` `C` y `N` лежат на одной окружности.


@темы: Планиметрия

08:40 

Вокруг мяча - 15

wpoms.
Step by step ...
Дан треугольник `ABC,` `AC = 31,` `AB = 22,` медианы `C C'` и `B B'` перпендикулярны друг другу. Найдите длину `BC.`


@темы: Планиметрия

08:07 

Вокруг мяча - 14

wpoms.
Step by step ...
Окружность `omega` описана около треугольника `ABC,` `I` - центр вписанной окружности треугольника `ABC,` касательная к окружности `omega,` проходящая через точку `C,` пересекает прямую `AB` в точке `D,` прямые `AI` и `BI` пересекают биссектрису угла `CDB` в точках `E` и `F,` соответственно, точка `M` - середина `AB.`
Докажите, что прямая `MI` проходит через середину дуги `ACB.`



Примечание. В условии имеется опечатка. Точка M - середина отрезка FE.

@темы: Планиметрия

06:59 

Вокруг мяча - 13

wpoms.
Step by step ...
В треугольнике `ABC` точка `D` является серединой гипотенузы `AB.` Окружность `k` описана около треугольника `BCD,` точка `E` лежит на меньшей дуге `BD.` На прямой `BC` выбрана точка `F` так, что точка `B` находится между точками `C` и `F` и `/_ BEF = 2/_BAF.` Окружность `k_1` описана около треугольника `CEF.`
Докажите, что одна из общих касательных окружностей `k` и `k_1` пролази через тачку `D.`


@темы: Планиметрия

23:20 

Вокруг мяча - 12

wpoms.
Step by step ...
Пусть `M` - середина стороны `BC` треугольника `ABC,` а `H` - его ортоцентр. Биссектриса угла `C` пересекает прямую `AH` в точке `T.` Пусть `MH` параллельна `CT.`
Докажите, что `BH = HT.`


@темы: Планиметрия

19:40 

Вокруг мяча - 11

wpoms.
Step by step ...
Окружность `k` с центром `I` вписана в треугольник `ABC,` она касается сторон `BC,` `CA` и `AB` в точках `D,` `E,` `F` соответственно, прямая `AI` пересекается с окружностью `k` в точке `G,` лежащей между точками `A` и `I,` прямые `BE` и `FG` параллельны.
Докажите, что `BD = EF.`


@темы: Планиметрия

19:16 

Вокруг мяча - 10

wpoms.
Step by step ...
Точка `T` расположена на отрезке `AB` ближе к точке `B.` Покажите,
(1) что для каждой точки `C,` отличной от `T,` принадлежащей перпендикуляру к отрезку `AB,` проходящему через точку `T,` существует ровно одна точка `D` на отрезке `AC` такая, что `/_ CBD = /_ BAC,` и
(2) что перпендикуляры к отрезку `AC,` проведенные через точку `D,` всегда проходят через одну и ту же точку `E` прямой `AB,` вне зависимости от выбора точки `C.`


@темы: Планиметрия

18:58 

Вокруг мяча - 9

wpoms.
Step by step ...
В неравнобедренном треугольнике `ABC` угол `C` прямой, `k` его описанная окружность, `D` - точка пересечения прямой `AB` и касательной к `k,` проходящей через точку `C,` прямая `g` перпендикулярна `AB` и проходит через точку `D,` `E` - точка пересечения `g` с прямой `AC,` `F` - точка пересечения `g` с прямой `BC.`
Докажите, что `D` является серединой отрезка `EF.`


@темы: Планиметрия

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная