Записи с темой: планиметрия (список заголовков)
18:58 

Вокруг мяча - 9

wpoms.
Step by step ...
В неравнобедренном треугольнике `ABC` угол `C` прямой, `k` его описанная окружность, `D` - точка пересечения прямой `AB` и касательной к `k,` проходящей через точку `C,` прямая `g` перпендикулярна `AB` и проходит через точку `D,` `E` - точка пересечения `g` с прямой `AC,` `F` - точка пересечения `g` с прямой `BC.`
Докажите, что `D` является серединой отрезка `EF.`


@темы: Планиметрия

05:11 

Вокруг мяча - 8

wpoms.
Step by step ...
Дан выпуклый пятиугольник ABCDE, AC и BE пересекаются в точке S, AD и BE пересекаются в точке R, CA и BD пересекаются в точке T, CE и BD пересекаются в точке P, CE и AD пересекаются в точке Q, площади треугольников ASR, BTS, CPT, DQP и ERQ равны 1.
(1) Найдите площадь PQRST.
(2) Найдите площадь ABCDE.


@темы: Планиметрия

04:59 

Вокруг мяча - 7

wpoms.
Step by step ...
Длина стороны равностороннего треугольника ABC равна 1, точка D лежит на стороне BC, `r_1,` `r_2` - длины радиусов вписанных окружностей треугольников ABD и ADC. Выразите `r_1r_2` как функцию от `p = BD` и найдите максимальное значение `r_1r_2.`


@темы: Планиметрия

22:42 

Вокруг мяча - 6

wpoms.
Step by step ...
В остроугольном треугольнике ABC высоты пересекаются в точке H, окружность, проходящая через точки B, H и C, пересекает прямую AB в точке D, а прямую AC в точке E, отрезок DE пересекает HB в точке P, а HC в точке Q, точки X и Y, отличные от A, лежат на прямых AP и AQ соответственно, точки X, H, A, B лежат на одной окружности, точки Y, H, A, C лежат на одной окружности.
Докажите, что прямые XY и BC параллельны.


@темы: Планиметрия

22:27 

Вокруг мяча - 5

wpoms.
Step by step ...
Дан остроугольный треугольник ABC, в котором AB < AC, биссектриса угла BAC пересекает BC в точке D, точка M является серединой BC.
Докажите, что прямая, проходящая через центры описанных окружностей треугольников ABC и ADM, параллельна AD.


@темы: Планиметрия

04:38 

Вокруг мяча - 4

wpoms.
Step by step ...
В треугольнике ABC проведены биссектрисы AD и BE, |AE| + |BD| = |AB|.
Докажите, что `/_ C = 60^@.`


@темы: Планиметрия

18:55 

Вокруг мяча - 3

wpoms.
Step by step ...
Окружность omega касается сторон AB и AC треугольника ABC. Окружность Omega касается стороны AC и продолжения стороны AB за точку B, а также касается omega в точке L, лежащей на стороне BC. Прямая AL вторично пересекает omega и Omega в точках K и M соответственно. Оказалось, что KB || CM. Докажите, что треугольник LCM равнобедренный.

Исправленное условие:

Точка O --- центр описанной окружности остроугольного треугольника ABC, точка M лежит на стороне AB, описанная окружность треугольника AMO пересекает повторно прямую AC в точке K, описанная окружность треугольника BOM пересекает повторно прямую BC в точке N.
Докажите, что Площадь (MNK) `>= 1/4` Площади (ABC), и определите, в каких случаях достигается равенство.


@темы: Планиметрия

18:49 

Вокруг мяча - 2

wpoms.
Step by step ...
Точки D, E, F симметричны центру описанной окружности треугольника ABC относительно его сторон.
Докажите, что треугольники ABC и DEF равны.


@темы: Планиметрия

17:52 

Вокруг мяча - 1

wpoms.
Step by step ...
Периметр треугольника `ABC` равен 100, его биссектрисы пересекаются в точке `I,` точка `M` является серединой стороны `BC,` прямая, параллельная `AB` и проходящая через точку `I,` пересекает медиану `AM` в точке `P,` `AP:PM = 7:3.` Найдите длину стороны `AB.`


@темы: Планиметрия

15:13 

Вписанный четырёхугольник

wpoms.
Step by step ...


Четырёхугольник `ABCD` вписан в окружность `omega_1` и середины всех сторон `ABCD` лежат на окружности `omega_2.` Докажите, что `/_ ABD + /_ BDC = 90^@.`



@темы: Планиметрия

20:29 

Планиметрия 8 кл ФМШ

Помогите решить задачу элементарными геометрическими методами (без аналитической геометрии, без тригонометрии).



Условие задачи:
В четырехугольник ABCD вписана окружность. Хорда KN этой окружности лежит на диагонали BD четырехугольника.
Точка M - середина хорды KN. Из этой точки M к вершине A и к вершине C четырехугольника проведены отрезки MA и MC соответственно.
Доказать, что угол CMB равен углу AMB.

Что было сделано (конспективно):
Рассмотрены свойства описанного четырехугольника, вписанных углов,
а также теоремы, связанные с описанными четырехугольниками и вписанными окружностями:
1) Свойства окружности девяти точек (окружность Эйлера); прямая Эйлера.
2) Лемма о трезубце (теорема о трилистнике).
3) Теорема о бабочке.
4) Теорема Ньютона (о прямой, соединяющей середины диагоналей описанного четырехугольника)
и теорема Гаусса (о трех отрезках в произвольном четырехугольнике).

Удалось доказать следующее:
Пусть в рассмотренном выше описанном четырехугольнике сторона BC касается вписанной окружности в точке F, а сторона BA в точке P.
Пусть центр вписанной окружности точка O. Тогда нетрудно показать, что точки O, M, F, B, P лежат на одной окружности с диаметром OB.
Отсюда следует (это тоже несложно показать), что угол FMB равен углу PMB.

Дальше продвинуться не удалось...

@темы: Планиметрия

15:07 

Части кругов

wpoms.
Step by step ...


На прямой выбраны точки P, Q, R и S так, что PQ = RS (см. рис.). Отрезки PQ, RS, PS, QR - диаметры кругов. Прямая MN --- ось симметрии закрашенной области. Докажите, что площадь закрашенной области равна площади круга с диаметром MN.





@темы: Планиметрия

22:32 

Точки на прямой

wpoms.
Step by step ...


Треугольник $ABC$ ($AB < AC$) вписан в окружность $\omega.$ Пусть $I$ --- центр вписанной окружности треугольника $ABC,$ точка $M$ окружности $\omega$ выбрана на меньшей дуге $AB$ так, что $\angle AMI = 90^\circ.$ Пусть $D$ --- точка касания вписанной окружности треугольника $ABC$ с отрезком $BC,$ точка $N$ --- середина меньшей дуги $BC$ окружности $\omega.$ Докажите, что точки $M,$ $D$ и $N$ лежат на одной прямой.



@темы: Планиметрия

21:20 

В треугольнике

wpoms.
Step by step ...


В треугольнике $ABC$ точки $D$ и $E$ --- основания высот треугольника, опущенных из вершин $B$ и $C$ соответственно. Точка $M$ симметрична точке $E$ относительно прямой $AC,$ точка $N$ симметрична точке $E$ относительно прямой $BC.$ Описанная окружность треугольника $CMN$, с центром $O,$ пересекает прямую $AC$ в точке $Q$ ($Q \neq C$). Докажите, что $QO \perp DE.$



@темы: Планиметрия

11:32 

Окружности

Холщовый мешок
Молодежь теперь любит роскошь. У нее плохие манеры. Она занимается болтовней, в то время как должна работать
с центрами в вершинах квадрата пересекаются в его центре, точки их касания с зелёной окружностью соединяет отрезок. Найдите отношения длин радиусов цветных окружностей.


@темы: ГИА (9 класс), Планиметрия

08:36 

Предел

Холщовый мешок
Молодежь теперь любит роскошь. У нее плохие манеры. Она занимается болтовней, в то время как должна работать
Дан треугольник ABC. На луче АВ отложим отрезок АА1, равный отрезку АС, на луче ВА отложим отрезок BB1, равный отрезку ВС. Продолжая аналогичные построения по отношению к треугольнику А1В1С, получим треугольник А2В2С и т. д. Общая высота этих треугольников равна h. Найти предел последовательности площадей треугольников ABC, А1В1С, А2В2С, ...


@темы: ГИА (9 класс), Планиметрия

20:27 

Трапеция,

Холщовый мешок
Молодежь теперь любит роскошь. У нее плохие манеры. Она занимается болтовней, в то время как должна работать
вписанная и описанная, большее основание - диаметр. Докажите, что сумма квадратов длин отрезков, соединяющих точку вписанной окружности с вершинами трапеции, равна квадрату длины её большего основания.


@темы: ГИА (9 класс), Планиметрия

09:07 

Цветы

Холщовый мешок
Молодежь теперь любит роскошь. У нее плохие манеры. Она занимается болтовней, в то время как должна работать
Даша и Аркаша решили посадить в палисаднике цветы. Даша очень любит тюльпаны, а Аркаша — пионы. Но саженцев пионов у Аркаши всего 4, к тому же, он не хочет, чтобы Даша, у которой целый мешок тюльпанов, засадила ими все вокруг так, что его пионов не будет видно, и хитрый Аркаша придумал условие.
— Даша, ты можешь сажать свои тюльпаны столько, сколько захочешь, но при условии, что на расстоянии 20 см от каждого твоего тюльпана должны расти два моих пиона.
Даша,немного думая,согласилась,но при условии,что сама выберет, где сажать как пионы, так и тюльпаны.
Довольный Аркаша подумал, что Даша больше двух тюльпанов и не сможет посадить, но был очень огорчен итогами всего мероприятия.
Какое наибольшее количество тюльпанов сможет посадить Даша? Покажите на рисунке.

@темы: Планиметрия

05:24 

Равнобедренный треугольник

Холщовый мешок
Молодежь теперь любит роскошь. У нее плохие манеры. Она занимается болтовней, в то время как должна работать
Известно, что AC + AI = BC, где I - центр вписанной окружности равнобедренного треугольника ABC. Найдите углы треугольника ABC.




О блокировании доступа к сайтам

Известно, что наши программисты лучшие. Проблема не в них, проблема в постановщиках задач. Непонятно, зачем стараться неуклюже блокировать доступ к каким-нибудь интернет-ресурсам и доставлять неудобство многим, если можно блокировать, по аналогии с лишением права на управление автомобилем, пользователей этих ресурсов. Встречал утверждение о том, что, например, твиттер блокирует доступ с устройства, которым пользовался забаненный пользователь, по его идентификатору.

Вопрос: Кого/что нужно блокировать?
1. Сайты 
1  (16.67%)
2. Пользователей 
4  (66.67%)
3. Сайты и пользователей 
1  (16.67%)
Всего: 6

@темы: Планиметрия

09:22 

Окружности и круги

Холщовый мешок
Молодежь теперь любит роскошь. У нее плохие манеры. Она занимается болтовней, в то время как должна работать
Найдите отношение длины радиуса круга к длине радиуса окружности, если центры окружностей расположены в вершинах правильного треугольника.


@темы: Планиметрия

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная