Записи с темой: теория вероятностей (список заголовков)
13:42 

Два решения для задачи

Есть 10 карт. Выбираем 3 карты последовательно. Среди 10-ти карт была одна уникальная. Какова вероятность того, что она окажется среди трех выбранных?
У меня есть два решения, приводящие к разным ответам:
1) `C_(10)^2 / C_(10) ^3 = 3/8`
2) `1/10+9/10*1/9+9/10*8/9*1/8=0.3`
Оба решения кажется верными, но ответы разные. Помогите, пожалуйста, какое решение неверно и почему?

@темы: Теория вероятностей

17:30 

Мат ожидание

мат ожидание

@темы: Теория вероятностей

21:28 

Задача по теории вероятностей

Задача следующая:

Три стрелка при одновременной стрельбе поражают мишень одним выстрелом с вероятностью 0,1. Найти вероятность поражения мишени первым стрелком, если известно, что второй и третий поражают мишень с вероятностью 0,9?

Я рассуждаю следующим образом:
Если мишень поражена, то при одновременной стрельбе в мишень было хотя бы одно попадание. Вероятность "хотя бы одного попадания" равна вероятности противоположного события "не было ни одного попадания", т.е.

`P=1-q_1 q_2 q_3 = 1-(1-p_1)(1-p_2)(1-p_3)`

`p_2` и `p_3`нам известны, вероятность `P` также известна. Осталось найти искомую `p_1`.

Это правильно?

@темы: Теория вероятностей

21:15 

Задача по теории вероятностей

Есть 25 мест, где предполагается разместить 6 кладов. Подсчитать количество возможных вариантов размещений.

Я правильно понимаю, что здесь нужно применить формулу числа размещений из 25 по 6?

`A_25^6=(25!)/((25-6)!)`

@темы: Теория вероятностей

15:35 

санкт -петербургский парадокс

вейко
что толку горевать?
а сколько бы максимально поставили вы, за право сыграть?
читать дальше

@темы: Про самолеты, Теория вероятностей

18:06 

Вопрос по теории вероятности

v-sofie
Добрый вечер!

Простой вопрос, по идеи, но голову сломала. Известно, что x1 и x2 совместно нормально распределены (известно среднее, дисперсия и коэфф. корреляции) и нас интересуют только те пары, у которых Р(х1,х2)>0.95. Известно, что х1 и х2 связаны формулой линейной регрессии: A + bx1 + cx2. Надо найти const, больше которой линейная регрессия. P(A + bx1 + cx2> const).

Как это сделать?

@темы: Теория вероятностей

18:47 

Коэффициент корреляции

Здравствуйте! Помогите, пожалуйста, со следующей задачей: "Найти коэффициент корреляции r между величинами x и x^2 : а) P(x=-1)=1/6; P(x=0)=1/3; P(x=1/2; б) x~R[0,1] (равномерное распределение)

@темы: Теория вероятностей

03:54 

Максимизация выигрыша

Здравствуйте, имеются следующие данные
user id | Выигрыш
----------------------------
1 | -22
1 | -4
1 | +33
2 | +12
2 | +6
2 | -11

Выигрыш формируется по заданным заранее вероятностям
Конечная задача понять при каких ситуациях сумма значения поля выиграш будет максимальна. И подкрутить текущие вероятсности таким образом чтобы конечный выигрыш был максимален
Т.е у нас может быть много по +10 или один раз +150, нужно понять оптимальный вариант
Как можно решить такую задачу?

@темы: Теория вероятностей, Методы оптимизации, Математическая статистика

17:20 

Парадокс теории вероятностей

Здравствуйте. Сегодня наткнулся на следующую задачу
Вероятность того, что родственник мужчины также мужчина — один к трем (не 50 на 50).
Условие:Вы встречаете парня по имени, допустим, Чад. Чад говорит вам, что у него есть родственник (брат или сестра), но он больше ничего о нем вам не скажет. Какова вероятность того, что родственник Чада — брат? Должно быть 50 на 50, верно? Тот факт, что Чад - мужчина, не может иметь никакого влияния на пол его родственника.

В решении они ссылаются на 4 возможных случая: мм, мд, дм, дд. Таким образом, откидывая дд, получаем `1/3`. У меня вопрос, почему они не добавили мм еще один раз? Ведь судя по их логике брат (если он есть), может быть как старше, так и младше.

@темы: Теория вероятностей

16:28 

Функция распределения

Требуется найти функцию распределения, если плотность распределения задана как
`f(x)={(0 if x<=0), (C(x-1) if 0 < x <=6 ), (0 if x>6):}`

Из условия нормировки нахожу параметр `C`: `C=1/12`.

Затем нахожу функцию распределения. Получаю:

`F(x)={(0 if x<=0), ((x^2/24-x/12) if 0 < x <=6 ), (1 if x>6):}`

Но меня смущает то, что функция распределения принимает отрицательные значения (например, при `x=1`). Но ведь так быть не должно? Перепроверял решение много раз, вроде все правильно. Что тогда не так?

@темы: Теория вероятностей

10:05 

Задача по теории вероятностей.

Ремонтируют телевизоры. Каждый 10 не ремонтируют (безнадежный). Привезли 10 телевизоров. Какова вероятность того, что один из них не стали ремонтировать (безнадежный)?

Я рассуждаю так: вероятность появления безнадежного (неремонтируемого) телевизора равна 0,1. Если привезли 10 телевизоров, то по этой вероятности 1 из них безнадежный. Значит, искомая вероятность равна 1? Или мои рассуждения неправильные?

@темы: Теория вероятностей

07:13 

Теория вероятностей

Здравствуйте. Помогите, пожалуйста, разобраться с двумя задачами.

@темы: Теория вероятностей, Комбинаторика

14:49 

Теория вероятностей

Еще одна задачка:
Вероятность безотказной работы прибора в течение месяца равна 0,8. Вероятность безотказной работы предохранителя прибора 0,9. При неисправном предохранителе прибор выходит из строя с вероятностью 0,4. Найти вероятность того, что после месяца работы предохранитель выйдет из строя, но прибор останется исправным.

А вот мое решение, в котором сомневаюсь((

@темы: Теория вероятностей

12:24 

Задача по теории вероятностей

Добрый день!
Подскажите, пожалуйста, верно ли решена задача? Что-то я сомневаюсь((


@темы: Комбинаторика, Теория вероятностей

22:54 

Задачи по терверу

Помогите, пожалуйста, решить задачи:
1) Из 52 карт вынимаются сразу 4 карты. Найти вероятность того, что все эти 4 карты будут разных мастей при условии, что каждая карта после вынимания возвращается обратно в колоду.
2) В общежитии проживает 10% студентов университета. 75% студентов, проживающих в общежитии, увлекается спортом, среди них 46% юношей. Какова вероятность встретить в студенческом городке юношу, увлекающегося спортом и живущего в общежитии?
3) У человека имеется N ключей, из которых только один подходит к двери. Он последовательно испытывает их. Процесс испытания может закончиться при 1, 2, …., N испытаниях. Показать, что каждый из этих исходов имеет вероятность 1/N.
4) На обувной фабрике в отдельных цехах производятся подметки, каблуки и верхи ботинок. Дефектными оказываются 1% каблуков, 4% подметок и 5% верхов. Каблуки, верхи и подметки случайно комбинируются в цехе, где шьют ботинки. Какой процент ботинок будет испорчен?

@темы: Теория вероятностей

14:52 

Математика. Вероятность . Распределение

здравствуйте, мне очень нужна ваша помощь
Нужно решить одну задачу , она не сложная и нужен кажется график.
Пожалуйста Нужно решить с объяснением чтобы , я понял как решается подобное.
Вот пример :
Равномерное распределение на [1,15] , Найти вероятность на [10,17] ?
Заранее спасибо!

@темы: Теория вероятностей

12:27 

Теория вероятностей

Добрый день!
Помогите, пожалуйста, разобраться с задачей.

36 карт розданы 4 игрокам по 6 карт каждому, а 12 лежат в прикупе. Найти вероятность того, что все тузы окажутся у первого игрока.

Чтобы найти вероятность, нужно использовать классическое определение вероятности P=m/n? Или другие формулы?
Не очень понимаю, что делать с прикупом(

@темы: Теория вероятностей

23:30 

С Новым Годом!!! и задача под НГ не решается((((

здравствуйте, с наступающим всех-всех!!!
задачка такая- На инструментальный склад поступили 8 новых инструментов. Каждой из трех смен выдается случайным образом один инструмент, который после окончания работы возвращается обратно на склад. Определить вероятность того, что третья смена получит новый инструмент.
Я начала рассматривать события А-выдается нов инструмент, В-выдается старый инструмент:
Р(ААА)+Р(ВВА)+Р(ВАА)+Р(АВА)
НО ведь нет количества старых инструментов7?? Или я не тем способом решаю????

@настроение: НОВОГОДНЕЕ

@темы: Теория вероятностей

22:14 

Теорвер

Аня называет число 0 или 1 с вероятностью p1 и 1-p1 соответственно. Ваня, независимо от нее называет те же числа с вероятностями p2 и 1-p2. Выигрывает Аня, если сумма чётна, Ваня - в противном случае. Каковы вероятности выигрыша для каждого из них? Если Аня знает p2, то как ей следует выбрать p1, чтобы добиться максимальной вероятности выигрыша?
Решение:
1) Пусть событие А - Аня называет число 0, событие B - число 1. Событие D - Ваня называет число 0, Е - число 1. Чтобы выиграть Ане, необходимо, чтобы сумма названных чисел была чётна. Значит, если Аня называет 1 (0), то Ваня должен назвать 1 (0), чтобы сумма очков была чётна. Найдем вероятность того, что Ваня и Аня назовут число 1:
P(AD)=P(A)∙P(D)=p1∙p2 (т.к. события А и В являются независимыми). Аналогично для числа 1: P(BE)= P(B)∙P(E)=(1-p1)∙(1-p2)=1-p2-p1+p1∙p2.
События AD и BE - несовместные события. Вероятность появления нескольких несовместных событий равна сумме вероятностей этих событий: P(AD+BE)=P(AD)+P(BE)= 1-p2-p1+2p1∙p2 - Вероятность выигрыша Ани. Соответственно, вероятность выигрыша Вани будет равна 1-P(AD+BE)= p2+p1-2p1∙p2.

2) Допустим p2=0.5 - т.е. вероятность того, что Ваня назовет 0 или 1 одинакова. Аня же выигрывает, если сумма чисел чётна. В данном случае Ане надо выбрать p1=0.5 (т.к. и 0 и 1 Ваня называет равновероятно).
Если же p2 > 0.5(т.е., более вероятно, что Ваня назовет 0). В этом случае p1 должно стремиться к 1 (т.к., чтобы выиграть, Ане необходима чётная сумма, т.е. надо назвать 0).
В случае p2 < 0.5 (т.е., более вероятно, что Ваня назовет 1). Тогда p1 должно стремиться к 0 (т.к., чтобы выиграть, Ане необходима чётная сумма, т.е. надо назвать 1).

Преподаватель сказал, что решил я задачу по всем пунктам полностью не верно. Думал несколько дней, но в голову больше ничего не пришло, вроде бы всё правильно. Подскажите, пожалуйста, в чём моя ошибка

@темы: Теория вероятностей

21:20 

Теорвер

Добрый вечер!

Задача:
Автомат заполняет банки кофе. Масса кофе и масса банки распределены НОРМАЛЬНО с математическими ожиданиями 500г и 50г и средними квадратичными отклонениями 8 г и 6г. Какова вероятность того, что масса готовой к продаже банки будет меньше 540 г

Решение:
Суммарная масса полной банки распределена НОРМАЛЬНО с мат. ожиданием 500+50 и ДИСПЕРСИЕЙ 8^2+6^2=100.
Ф((540-550)/sqr(8^2+6^2))=Ф((-10)/10))=Ф(-1)=0.159 ; здесь Ф - нормальная стандартная функция распределения
Получается P = 0.159

Подскажите, пожалуйста, правильно ли я решил задачу?

@темы: Теория вероятностей

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная