• ↓
  • ↑
  • ⇑
 
Записи с темой: теория вероятностей (список заголовков)
17:30 

Мат ожидание

мат ожидание

@темы: Теория вероятностей

21:28 

Задача по теории вероятностей

Задача следующая:

Три стрелка при одновременной стрельбе поражают мишень одним выстрелом с вероятностью 0,1. Найти вероятность поражения мишени первым стрелком, если известно, что второй и третий поражают мишень с вероятностью 0,9?

Я рассуждаю следующим образом:
Если мишень поражена, то при одновременной стрельбе в мишень было хотя бы одно попадание. Вероятность "хотя бы одного попадания" равна вероятности противоположного события "не было ни одного попадания", т.е.

`P=1-q_1 q_2 q_3 = 1-(1-p_1)(1-p_2)(1-p_3)`

`p_2` и `p_3`нам известны, вероятность `P` также известна. Осталось найти искомую `p_1`.

Это правильно?

@темы: Теория вероятностей

21:15 

Задача по теории вероятностей

Есть 25 мест, где предполагается разместить 6 кладов. Подсчитать количество возможных вариантов размещений.

Я правильно понимаю, что здесь нужно применить формулу числа размещений из 25 по 6?

`A_25^6=(25!)/((25-6)!)`

@темы: Теория вероятностей

15:35 

санкт -петербургский парадокс

вейко
что толку горевать?
а сколько бы максимально поставили вы, за право сыграть?
читать дальше

@темы: Про самолеты, Теория вероятностей

18:06 

Вопрос по теории вероятности

v-sofie
Добрый вечер!

Простой вопрос, по идеи, но голову сломала. Известно, что x1 и x2 совместно нормально распределены (известно среднее, дисперсия и коэфф. корреляции) и нас интересуют только те пары, у которых Р(х1,х2)>0.95. Известно, что х1 и х2 связаны формулой линейной регрессии: A + bx1 + cx2. Надо найти const, больше которой линейная регрессия. P(A + bx1 + cx2> const).

Как это сделать?

@темы: Теория вероятностей

18:47 

Коэффициент корреляции

Здравствуйте! Помогите, пожалуйста, со следующей задачей: "Найти коэффициент корреляции r между величинами x и x^2 : а) P(x=-1)=1/6; P(x=0)=1/3; P(x=1/2; б) x~R[0,1] (равномерное распределение)

@темы: Теория вероятностей

03:54 

Максимизация выигрыша

Здравствуйте, имеются следующие данные
user id | Выигрыш
----------------------------
1 | -22
1 | -4
1 | +33
2 | +12
2 | +6
2 | -11

Выигрыш формируется по заданным заранее вероятностям
Конечная задача понять при каких ситуациях сумма значения поля выиграш будет максимальна. И подкрутить текущие вероятсности таким образом чтобы конечный выигрыш был максимален
Т.е у нас может быть много по +10 или один раз +150, нужно понять оптимальный вариант
Как можно решить такую задачу?

@темы: Теория вероятностей, Методы оптимизации, Математическая статистика

17:20 

Парадокс теории вероятностей

Здравствуйте. Сегодня наткнулся на следующую задачу
Вероятность того, что родственник мужчины также мужчина — один к трем (не 50 на 50).
Условие:Вы встречаете парня по имени, допустим, Чад. Чад говорит вам, что у него есть родственник (брат или сестра), но он больше ничего о нем вам не скажет. Какова вероятность того, что родственник Чада — брат? Должно быть 50 на 50, верно? Тот факт, что Чад - мужчина, не может иметь никакого влияния на пол его родственника.

В решении они ссылаются на 4 возможных случая: мм, мд, дм, дд. Таким образом, откидывая дд, получаем `1/3`. У меня вопрос, почему они не добавили мм еще один раз? Ведь судя по их логике брат (если он есть), может быть как старше, так и младше.

@темы: Теория вероятностей

16:28 

Функция распределения

Требуется найти функцию распределения, если плотность распределения задана как
`f(x)={(0 if x<=0), (C(x-1) if 0 < x <=6 ), (0 if x>6):}`

Из условия нормировки нахожу параметр `C`: `C=1/12`.

Затем нахожу функцию распределения. Получаю:

`F(x)={(0 if x<=0), ((x^2/24-x/12) if 0 < x <=6 ), (1 if x>6):}`

Но меня смущает то, что функция распределения принимает отрицательные значения (например, при `x=1`). Но ведь так быть не должно? Перепроверял решение много раз, вроде все правильно. Что тогда не так?

@темы: Теория вероятностей

10:05 

Задача по теории вероятностей.

Ремонтируют телевизоры. Каждый 10 не ремонтируют (безнадежный). Привезли 10 телевизоров. Какова вероятность того, что один из них не стали ремонтировать (безнадежный)?

Я рассуждаю так: вероятность появления безнадежного (неремонтируемого) телевизора равна 0,1. Если привезли 10 телевизоров, то по этой вероятности 1 из них безнадежный. Значит, искомая вероятность равна 1? Или мои рассуждения неправильные?

@темы: Теория вероятностей

07:13 

Теория вероятностей

Здравствуйте. Помогите, пожалуйста, разобраться с двумя задачами.

@темы: Теория вероятностей, Комбинаторика

14:49 

Теория вероятностей

Еще одна задачка:
Вероятность безотказной работы прибора в течение месяца равна 0,8. Вероятность безотказной работы предохранителя прибора 0,9. При неисправном предохранителе прибор выходит из строя с вероятностью 0,4. Найти вероятность того, что после месяца работы предохранитель выйдет из строя, но прибор останется исправным.

А вот мое решение, в котором сомневаюсь((

@темы: Теория вероятностей

12:24 

Задача по теории вероятностей

Добрый день!
Подскажите, пожалуйста, верно ли решена задача? Что-то я сомневаюсь((


@темы: Комбинаторика, Теория вероятностей

22:54 

Задачи по терверу

Помогите, пожалуйста, решить задачи:
1) Из 52 карт вынимаются сразу 4 карты. Найти вероятность того, что все эти 4 карты будут разных мастей при условии, что каждая карта после вынимания возвращается обратно в колоду.
2) В общежитии проживает 10% студентов университета. 75% студентов, проживающих в общежитии, увлекается спортом, среди них 46% юношей. Какова вероятность встретить в студенческом городке юношу, увлекающегося спортом и живущего в общежитии?
3) У человека имеется N ключей, из которых только один подходит к двери. Он последовательно испытывает их. Процесс испытания может закончиться при 1, 2, …., N испытаниях. Показать, что каждый из этих исходов имеет вероятность 1/N.
4) На обувной фабрике в отдельных цехах производятся подметки, каблуки и верхи ботинок. Дефектными оказываются 1% каблуков, 4% подметок и 5% верхов. Каблуки, верхи и подметки случайно комбинируются в цехе, где шьют ботинки. Какой процент ботинок будет испорчен?

@темы: Теория вероятностей

14:52 

Математика. Вероятность . Распределение

здравствуйте, мне очень нужна ваша помощь
Нужно решить одну задачу , она не сложная и нужен кажется график.
Пожалуйста Нужно решить с объяснением чтобы , я понял как решается подобное.
Вот пример :
Равномерное распределение на [1,15] , Найти вероятность на [10,17] ?
Заранее спасибо!

@темы: Теория вероятностей

12:27 

Теория вероятностей

Добрый день!
Помогите, пожалуйста, разобраться с задачей.

36 карт розданы 4 игрокам по 6 карт каждому, а 12 лежат в прикупе. Найти вероятность того, что все тузы окажутся у первого игрока.

Чтобы найти вероятность, нужно использовать классическое определение вероятности P=m/n? Или другие формулы?
Не очень понимаю, что делать с прикупом(

@темы: Теория вероятностей

23:30 

С Новым Годом!!! и задача под НГ не решается((((

здравствуйте, с наступающим всех-всех!!!
задачка такая- На инструментальный склад поступили 8 новых инструментов. Каждой из трех смен выдается случайным образом один инструмент, который после окончания работы возвращается обратно на склад. Определить вероятность того, что третья смена получит новый инструмент.
Я начала рассматривать события А-выдается нов инструмент, В-выдается старый инструмент:
Р(ААА)+Р(ВВА)+Р(ВАА)+Р(АВА)
НО ведь нет количества старых инструментов7?? Или я не тем способом решаю????

@настроение: НОВОГОДНЕЕ

@темы: Теория вероятностей

22:14 

Теорвер

Аня называет число 0 или 1 с вероятностью p1 и 1-p1 соответственно. Ваня, независимо от нее называет те же числа с вероятностями p2 и 1-p2. Выигрывает Аня, если сумма чётна, Ваня - в противном случае. Каковы вероятности выигрыша для каждого из них? Если Аня знает p2, то как ей следует выбрать p1, чтобы добиться максимальной вероятности выигрыша?
Решение:
1) Пусть событие А - Аня называет число 0, событие B - число 1. Событие D - Ваня называет число 0, Е - число 1. Чтобы выиграть Ане, необходимо, чтобы сумма названных чисел была чётна. Значит, если Аня называет 1 (0), то Ваня должен назвать 1 (0), чтобы сумма очков была чётна. Найдем вероятность того, что Ваня и Аня назовут число 1:
P(AD)=P(A)∙P(D)=p1∙p2 (т.к. события А и В являются независимыми). Аналогично для числа 1: P(BE)= P(B)∙P(E)=(1-p1)∙(1-p2)=1-p2-p1+p1∙p2.
События AD и BE - несовместные события. Вероятность появления нескольких несовместных событий равна сумме вероятностей этих событий: P(AD+BE)=P(AD)+P(BE)= 1-p2-p1+2p1∙p2 - Вероятность выигрыша Ани. Соответственно, вероятность выигрыша Вани будет равна 1-P(AD+BE)= p2+p1-2p1∙p2.

2) Допустим p2=0.5 - т.е. вероятность того, что Ваня назовет 0 или 1 одинакова. Аня же выигрывает, если сумма чисел чётна. В данном случае Ане надо выбрать p1=0.5 (т.к. и 0 и 1 Ваня называет равновероятно).
Если же p2 > 0.5(т.е., более вероятно, что Ваня назовет 0). В этом случае p1 должно стремиться к 1 (т.к., чтобы выиграть, Ане необходима чётная сумма, т.е. надо назвать 0).
В случае p2 < 0.5 (т.е., более вероятно, что Ваня назовет 1). Тогда p1 должно стремиться к 0 (т.к., чтобы выиграть, Ане необходима чётная сумма, т.е. надо назвать 1).

Преподаватель сказал, что решил я задачу по всем пунктам полностью не верно. Думал несколько дней, но в голову больше ничего не пришло, вроде бы всё правильно. Подскажите, пожалуйста, в чём моя ошибка

@темы: Теория вероятностей

21:20 

Теорвер

Добрый вечер!

Задача:
Автомат заполняет банки кофе. Масса кофе и масса банки распределены НОРМАЛЬНО с математическими ожиданиями 500г и 50г и средними квадратичными отклонениями 8 г и 6г. Какова вероятность того, что масса готовой к продаже банки будет меньше 540 г

Решение:
Суммарная масса полной банки распределена НОРМАЛЬНО с мат. ожиданием 500+50 и ДИСПЕРСИЕЙ 8^2+6^2=100.
Ф((540-550)/sqr(8^2+6^2))=Ф((-10)/10))=Ф(-1)=0.159 ; здесь Ф - нормальная стандартная функция распределения
Получается P = 0.159

Подскажите, пожалуйста, правильно ли я решил задачу?

@темы: Теория вероятностей

13:29 

Здравствуйте!
Имею две задачи по теории вероятностей. Посмотрите, пожалуйста.

читать дальше
Задача 1:
Из первого мешка, в котором лежат 10 шоколадных конфет и 10 карамельных конфет, дедушка Мороз переложил три конфетки во второй мешок, в котором лежат 14 шоколадных и 14 карамельных конфет. Затем из второго мешка дедушка Мороз извлек конфетку.
a) Найдите вероятность того, что конфетка оказалось шоколадной.
b) Конфетка оказалась карамельной. Какова вероятность, что ее достали из второго мешка?
Подсказка: рассмотрите события Hi: «из первого мешка во второй переложено i шоколадных конфет».

У меня выходит, что все условные вероятности равны, а условная вероятность не может быть равной, ведь там получается число карамельных конфет из второго мешка/число всех карамельных конфет...
ну еще помноженное на вероятность ситуации, когда переложили именно это число конфет (а оно вроде 1/4 всегда равна) и, вроде, если общее число карамельных конфет в двух мешках не меняется от перекладываний, то число карамельных конфет во втором мешке меняется... Честно, уже не понимаю, что делаю. Может быть, кто подскажет алгоритм решения?

Задача 2:
Транайская Федерация включает в себя три субъекта: Верхние кочки, Нижние клочки и Центральные закоулочки. Больше половины жителей Федерации используют автомобили в качестве средства передвижения. Среди жителей Верхних кочек более половины жителей негативно относятся к автомобилям и используют в качестве транспорта самокаты. Возьмем случайного жителя Транайской Федерации. Являются ли независимыми события «этот житель из Верхних кочек» и «Этот житель использует автомобиль»? Ответ подробно обоснуйте.

Вот с этой задачей я в совершенной растерянности...

@темы: Теория вероятностей, Текстовые задачи

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная