Записи с темой: математический анализ (список заголовков)
15:01 

Разложение функции по степеням

Написать разложение функции по целым неотрицательным степеням
`f(x)=sh(x)`

`sh(x)=(e^x-e^(-x))/2=1/2(\sum_{0}^{\propto } \frac{(x)^{n}}{n!} - \sum_{0}^{\propto } \frac{(-x)^{n}}{n!}`
А вот как дальше под одну сумму загнать....не знаю(

@темы: Математический анализ

14:55 

Найти сумму ряда

`\sum_{1}^{\propto } \frac{(-1)^{n+1}}{n}`

Предел частичных сумм - это сумма ряда...
В ответе будет `ln2`. Но не могу понять, как получается этот ответ

@темы: Математический анализ

13:12 

Оценить снизу функцию

Здравствуйте! Появился такой вопрос. Нужно показать, что `\lim_{|x|+|y|+|z| \to oo} [ 9/2x^2+1/3y^4+z^2+3xz ] \to +oo `
Я начинаю рассматривать параллелепипеды, и, очевидно, увеличивая его грани, функция будет расти к бесконечности, но нужно это показать, то есть оценить функцию трех переменных снизу... Можете навести на мысль как действовать?

@темы: Математический анализ, Пределы, Функции нескольких переменных

20:42 

Доказать, что последовательность сходится и найти предел, если` x_1=3/2`, `x_(n+1)=sqrt(3*(x_n)-2)`

Предполагаю, что предел существует и равен А. Тогда `A=sqrt(3A-2)`
`A^2-3A+2=0`
`A_1=1`
`A2=2`
Но последовательность же не может иметь два предела....


Или здесь стоит доказать по индукции, что последовательность убывающая? И тогда предел будет равен 1?

@темы: Математический анализ

19:59 

Вычислить производную 16-й степени функции `x^2*cos^2(x)`

Я посчитала до четвертой производной, но закономерности никакой не вижу
Или здесь нужно применять формулу Лейбница?

@темы: Математический анализ

14:38 

Вычислить предель

`lim_(x -> 0) ((2/pi)arcsin(1-3x^2))^(1/x)`


Я сомневаюсь в моменте, когда я `х` сократила на `|x|`
Возможно, там нужно было рассматривать два случая: стремление к нулю слева и справа?
Тогда бы было два ответа `e^(-(2*sqrt(6))/Pi)` и `e^((2*sqrt(6))/Pi)`.....

@темы: Математический анализ

11:56 

Вычислить `lim_(x to 0) ( root(3)(x* tg^2(x) ) - ln(x + sqrt(x^2 + 1)) )/(x - sin(x))`

Как я понимаю, здесь нужен Тейлор

Вот только до какой степени нужно раскладывать? И как разложить корень кубический с тангенсом ... совсем нет идет (

@темы: Пределы, Математический анализ

10:20 

Доказать, что последовательность `x_n=1-1/3+1/5-...+((-1)^n)/(2n-1)` сходится и найти номер, начиная с которого `|x_n - A| < 0,001`

Не уверена, что оценила правильно

и, видимо, номер я тоже не правильно ищу

@темы: Пределы, Математический анализ

09:59 

Вычислить предел

`lim_(x -> 0) ((sin(x)+cos((pi+2*x)/(x^3+2)))/(x^3))`

Мне кажется, что я считаю правильно. Но...в онлайн калькуляторе выдается ответ Пи/4, а у меня Пи/2
Подскажите, пожалуйста, что я упускаю?.....


@темы: Пределы, Математический анализ

21:56 

Перестановка предельных переходов

IWannaBeTheVeryBest
Всем привет. Опять доказательство теоремы, в котором хотелось бы разобраться. (Фихтенгольц, том 2, гл. 14, параграф 1, пункт 505)
Пусть существует по отдельности пределы
`lim_{y->y_0} f(x, y) = phi(x)`
`lim_{x->x_0} f(x, y) = psi(y)`
Если стремление `f(x, y)` к `phi(x)` равномерное, то существуют и равны повторные пределы
`lim_{x->x_0} lim_{y->y_0} f(x, y) = lim_{y->y_0} lim_{x->x_0} f(x, y)` (1)
Доказательство начинается с условия равномерного стремления `f(x, y)` к своей предельной функции
`\forall epsilon > 0` `\exists delta > 0:` `|y - y_0|,` `|y' - y_0| < delta => |f(x, y') - f(x, y)| < epsilon`
Переходя к пределу в последнем неравенстве, при `x -> x_0`
(вот здесь первый вопрос. Зачем это делается? Я думаю потому что в левой части равенства (1) `x` при внешнем пределе стремится к `x_0`)
получаем
`|psi(y') - psi(y)| <= epsilon` (почему знак неравенства не строгий?)
Здесь выполнено условие Больцано - Коши для `psi(y)` => `lim_{y -> y_0} psi(y) = A`.
(верно ли я понимаю, что мы, используя внешний предел в левой части равенства (1), получили то, что в правой части этого равенства стоит число?)
Ясно теперь, что `|y - y_0| < delta => ` `|phi(x) - f(x, y)| <= epsilon` и `|psi(y) - A| <= epsilon` (опять почему то не строгие знаки)
Сохраняя выбранное значение `y` найдем такое `delta' > 0:` `|x - x_0| < delta' =>` `|f(x, y) - psi(y)| < epsilon` (это просто использование определение предела?)
Из всех выше указанных неравенств следует, что
`|phi(x) - A| < 3*epsilon`
Ну это более менее понятно. Только, если честно, на какой-то подгон немного похоже. Очень удобная расстановка всех функций в модулях, хотя, безусловно, под модулем эти разности функций можно как угодно писать.
Из последнего неравенства следует
`lim_{x -> x_0} phi(x) = A`
Что и требовалось доказать.
Можете ли сказать, верно ли я все понимаю? Ну хотя бы без знаков неравенства

@темы: Математический анализ

20:57 

Многочлены Лежандра

IWannaBeTheVeryBest
В теме "Ортогональные системы функций" (Фихтенгольц Т3, Гл. 19, параграф 1, п. 679, пример 5) указаны многочлены Лежандра в качестве ортогональной системы функций.
Приведен интеграл
`int_{-1}^{1} P^2(x) dx = 2/(2n + 1)`
`P_0(x) = 1`
`P_n(x) = 1/((2n)!!) * (d^n(x^2 - 1)^n)/(dx^n)`
Решил я разобраться с этим интегралом. Фихтенгольц меня отправляет -> Т2, гл. 9, параграф 4, п. 320, стр. 150.
Исключаем временно константу `1/(((2n)!!)^2)`
Рассмотрим интеграл
`int_{-1}^{1} (d^n(x^2 - 1)^n)/(dx^n) * (d^n(x^2 - 1)^n)/(dx^n) dx`
Интегрируем по частям
Берем первую дробь за `u` другую за `dv`. Части `uv` при подстановке пределов интегрирования будут обнуляться. При `int_{-1}^{1} vdu` будет вылезать минус.
Проделав эту операцию `n` раз, мы получаем интеграл
`(-1)^n * int_{-1}^{1} (d^(2n)(x^2 - 1)^n)/(dx^(2n)) * (x^2 - 1)^n dx = 2 * (2n)! * int_{0}^{1} (1 - x^2)^n dx`
Здесь мне понятно все, кроме одного. Как доказать такое равенство
`(d^(2n)(x^2 - 1)^n)/(dx^(2n)) = (2n)!`
Дальнейшие выкладки мне понятны. Даже дословно разобрал `int_{0}^{1} (1 - x^2)^n dx` при `x = sint`. Тут все ясно. Вот помогите только доказать это равенство. На него ссылок вроде Фихтенгольц не оставил(( Проще конечно на веру принять. Но если разбираться, то уж до конца. А то так просто не интересно))

@темы: Математический анализ

16:53 

Интегралы с параметром

IWannaBeTheVeryBest
Всем привет. Не могу понять, как идет доказательство одной из теорем. Конкретно - т.2, гл. 14 "Интегралы, зависящие от параметра", параграф 1, пункт 508 "Интегрирование под знаком интеграла", теорема 4.
"Если функция `f(x, y)` непрерывна (по обеим переменным) в прямоугольнике `[a, b; c, d]`, то имеет место формула
`int_{c}^{d} dy int_{a}^{b} f(x, y) dx = int_{a}^{b} dx int_{c}^{d} f(x, y) dy`"
Доказательство:
"Докажем более общее равенство
`int_{c}^{\eta} dy int_{a}^{b} f(x, y) dx = int_{a}^{b} dx int_{c}^{\eta} f(x, y) dy`, `c <= \eta <= d`
Вычислим производные по `\eta`. Внешний интеграл имеет подинтегральную функцию `f(x, y)` непрерывную по `y`. Поэтому его производная, по переменному верхнему пределу, будет равна подинтегральной функции, вычисленной при `y = \eta`:
`int_{a}^{b} f(x, \eta) dx`... "
Вот тут я не понял, почему так? Если расписывать, то тогда получается
`D_{\eta} int_{c}^{\eta} dy int_{a}^{b} f(x, y) dx = int_{a}^{b} f(x, \eta) dx`
Каким образом этот переход был осуществлен? Ну если чисто интуитивно рассуждать, что я не люблю, если мы находим производную, то один из внешних интегралов, в повторном интеграле, должен исчезать. Кроме того, если этот внешний интеграл был по `y`, то и `\eta` становится параметром вместо `y`. Но это все просто, как говорится, "разговоры на лавочке".

@темы: Математический анализ

23:06 

Иррациональный заяц

Говорят, эту задачу решают еще в школах. Но я услышал её только недавно и так и не понял как её решать. Итак, есть тригонометрический круг . Заяц прыгает по окружности с целочисленной скоростью. Докажите, что он не окажется ни в какой точке более одного раза

@темы: Математический анализ

20:23 

polinapolin
Добрый день,

Помогите, пожалуйста, вычислить такую сумму
`1/2*1+1/2^2*2+1/2^3*3+1/2^4*4+...`

Пыталась записать через предел, посчитать только первую сумму, а остальную устремить к нулю, но к ответу, полученному при помощи матлаб так и не пришла...

Заранее спасибо!

@темы: Математический анализ

18:27 

Лемма Римана. Равномерная сходимость рядов Фурье

IWannaBeTheVeryBest
Всем привет. Я почему-то вообще не могу понять доказательство из Фихтенгольца.
"Пусть f(x) определена и абсолютно интегрируема на `[A, B]`. Тогда пределы `lim_{p->\infty} int_{a}^{b} g(t) sin(pt) dt` и `lim_{p->\infty} int_{a}^{b} g(t) cos(pt) dt`
равномерно стремятся к нулю относительно переменных `a` и `b`, которые принимают произвольные значения в промежутке `[A, B]`"
"Доказательство. Достаточно рассмотреть первый из интегралов. Ввиду равномерной непрерывности функций
`int_{A}^{t} |g(t)| dt`
(тут не понял что это за вид интеграла такой. куда-то делся синус, и верхний предел теперь переменный...)
можно разбить по заданному `\epsilon > 0` промежуток `[A, B]` точками
`A = \tau_{0} < \tau_{1} < \dots < \tau_i < \tau_{i + 1} < \dots < \tau_n = B` (...и как это приводит сюда)
на столь мелки части, чтобы было
`int_{\tau_i}^{\tau_{i + 1}}|g(t)| dt < \epsilon`
Для интегралов вида
`int_{\tau_i}^{\tau_j}g(t)*sin(pt) dt` (1)
так как их конечное число можно установить общее `\Delta > 0`, такое, что для `p > \Delta` все они по абсолютной величине уже будут `< \epsilon`.
Но, как легко видеть (но я не вижу), интеграл
`int_a^b g(t) sin(pt) dt`,
каковы бы ни были `a` и `b`, разнится (при любом `p`) меньше, чем на `2\epsilon`, от одного из интегралов вида (1) (объясните, как это видно). Следовательно, при `p > \Delta` он независимо от `a` и `b` по абсолютной величине будет `< 3\epsilon`, что и требовалось доказать."
То есть в общем-то я не понял, зачем изначально такой интеграл рассматривается, без синуса. И все эти манипуляции с 2 и 3 эпсилон. Просто охота не тупо вызубрить и рассказать преподавателю. Охота понять действительно ли это так.
Пока что предположения такие. Рассматривается этот интеграл выше, так как просто тупо фиксируется нижняя граница, а верхняя, как и описано в теореме, может изменяться на `(A, B]`.

@темы: Математический анализ

12:32 

Примечание

pemac
Привет!
В этой книге нет ни одной иллюстрации. Очень трудно для понимания.
Архипов, Садовничий и др.: Лекции по математическому анализу.

От издателя
"Книга является учебником по курсу математического анализа, посвящена дифференциальному и интегральному исчислениям функций одной и нескольких переменных и соответствует программе для высших учебных заведений, рекомендованной Министерством образования РФ. В ее основу положены лекции, прочитанные авторами на механико-математическом факультете МГУ им. М.В.Ломоносова.
В учебнике предложен новый подход к изложению ряда понятий и теорем анализа, а также и к самому содержанию курса.

Для студентов университетов, педагогических вузов и вузов с углубленным изучением математики."

Так и должно быть????

@темы: Математический анализ

23:43 

Объем n-мерного шара

Здравствуйте. Помогите пожалуйста разобраться с задачей.

Объем n-мерного шара единичного радиуса можно найти по формуле V_n = V_(n-1) * I_n, где I_n = integral (cos^n x) dx, x=[-pi/2..pi/2]

V_n,2e = V_(n-1)*I_n,2e, где I_n,2e = integral (cos^n x) dx, x=[-e..e] - объем "среднего слоя" n-мерного шара. Слой этот расположен симметрично относительно центра шара. Толщина слоя достаточно мала и равняется 2e (два эпсилон).

Требуется найти предел отношения объема такого слоя к объему всего шара при n -> infinity.

Иначе говоря lim ( [integral (cos^n x) dx, x=[-pi/2..pi/2]] / [integral (cos^n x) dx, x=[-e..e]] ) as n ->infinity

Интуитивно ясно и достаточно очевидно из графика, что предел равен 1, поскольку при увеличении n график все сильнее будет сжиматься к Oy, но показать этот результат аналитически пока не удалось. Манипуляции с reduction formula к успеху не привели.

Спасибо.

@темы: Математический анализ

19:50 

Исследовать на равномерную сходимость интеграл

IWannaBeTheVeryBest
`int_{0}^{\infty} (sin(ax)dx)/sqrt(x^2 + a^2)`
`a \in (0; +\infty)`
Можно ли оценить его таким образом
`|int_{A}^{\infty} (sin(ax)dx)/sqrt(x^2 + a^2)| <= int_{A}^{\infty} |(sin(ax))/sqrt(x^2 + a^2)| dx <= int_{A}^{\infty} |(sin(ax))/x| dx <= pi/2`
?
Во-первых меня смущает то, что параметр можно к 0 устремить. И как в таком случае будет вести себя интеграл на бесконечности?
И еще, надеюсь не опоздал. Можно ли доказать `lim_{x->0} sinx/x = 1` по определению предела? А то на википедии какой-то геометрический метод. Ну это так, чисто интересно.

@темы: Математический анализ

11:38 

Вторая основная лемма (Дирихле)

IWannaBeTheVeryBest
Здравствуйте. В Фихтенгольце, в параграфе "Разложение функций в ряд Фурье", есть пункт "Вторая основная лемма", которая гласит
"Если функция `g(t)` монотонно возрастает, оставаясь ограниченной в промежутке `[0, h]`, где `h>0`, то
`lim_{p->\infty} int_{0}^{h} g(t)*(sin(pt)dt)/t = (pi/2) * g(+0)`"
Что означает запись `g(+0)`? Просто там еще есть обозначения вроде `(g(t + 0) + g(t - 0))/2`.
По моему предположению, первое означает `lim_{t->+0} g(t)`. А во втором речь про бесконечно малую окрестность точки (так как функция в самой точке имеет разрыв или скачок). Правильно?

@темы: Математический анализ

16:35 

Gormogon
Добрый день!
Нужна помощь вот с такой формулировкой задания:
Нужен способ вычислить пределы интегрирования, в которых функция принимает наибольшие значения. Значение этого интеграла - 0.5. Интервал самой функции 0 - 4260.
Т.е. границы верхней выпуклости, площадь которой 0.5.

@темы: Математический анализ

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная