Записи с темой: планиметрия (список заголовков)
13:07 

Холщовый мешок
Соединённые Штаты являются для всего мира совестью
Найдите отношение радиуса красной окружности к радиусу синей.


@темы: Планиметрия

10:12 

Холщовый мешок
Соединённые Штаты являются для всего мира совестью
Точки делят окружность радиуса 9 см на равные части. Найдите площадь окрашенной фигуры.


@темы: Планиметрия, ГИА (9 класс)

05:15 

Холщовый мешок
Соединённые Штаты являются для всего мира совестью
Окружность радиуса 3 cm катится из P в Q. Найдите длину пути, пройденного центром окружности.


@темы: Планиметрия, ГИА (9 класс)

10:06 

Холщовый мешок
Соединённые Штаты являются для всего мира совестью
Найдите отношение радиуса красной окружности к радиусу синей.


@темы: Планиметрия

08:28 

Холщовый мешок
Соединённые Штаты являются для всего мира совестью
Найдите отношение радиуса красной окружности к радиусу синей.


@темы: Планиметрия

08:31 

Холщовый мешок
Соединённые Штаты являются для всего мира совестью
На рисунке изображен план парка. Найдите площадь его выделенной цветом части.


@темы: Планиметрия, ГИА (9 класс)

23:36 

Холщовый мешок
Соединённые Штаты являются для всего мира совестью
В равнобедренной трапеции `ABCD` (`AD||BC`) `/_A=120^@`, `/_C=60^@`, `AB:BC=3:5`, `AE:EB=3:5`. Найдите отношение площадей `DFC` и `ABCD`.


@темы: ГИА (9 класс), Планиметрия

20:02 

Холщовый мешок
Соединённые Штаты являются для всего мира совестью
В правильном треугольнике из его внутренней точки провели высоты так, как это показано на рисунке. Найдите длину стороны треугольника.

@темы: Планиметрия, ГИА (9 класс)

17:08 

Длина отрезка

wpoms.
Step by step ...


Вокруг равностороннего треугольника ABC описана окружность. На меньшей дуге BC взята точка M, такая, что MB = 21, MC = 28. Отрезки AM и BC пересекаются в точке D. Найдите длину отрезка MD.



@темы: Планиметрия

22:14 

Геометрия

Недавно советовали задачник Шень - сборник несложных разнообразных задач по геометрии и необходимой теории к ним, очень хороший вариант для знакомства с геометрией.

Как решается такая задача?



В «средствах массовой информации» говорилось, что изображение на полях представляет собой спутниковый снимок малайзийского «Боинга-777» (в верхнем левом углу) перед катастрофой.
Сравнивая величину изображения самолёта и взлётной полосы (вертикальная полоса в правом нижнем углу, по длине чуть меньше изображения самолёта), объясните, почему это не так: оцените высоту, с которой можно было бы сделать такой «спутниковый снимок». (Длина «Боинга-777» меньше 80 м, длина полосы аэропорта - несколько километров.)

@темы: Планиметрия

20:24 

Почти как муха между паравозами

wpoms.
Step by step ...


Пусть `AB` - отрезок длины 1. Несколько частиц начинают двигаться одновременно с постоянными скоростями от `A` к `B.` Как только частица достигает `B,` она поворачивается и продолжает движение в направлении `A.` Когда она достигает `A,` она начинает двигаться к `B,` и так далее до бесконечности.
Найдите все рациональные числа `r>1` такие, что существует момент времени `t`, про который известно, что для каждого `n >= 1`, если `n+1` частица движется с постоянными скоростями 1, `r`, `r^2`, ..., `r^n` так как это описано выше, то в некоторый момент времени `t` все они будут находиться в одной внутренней точке отрезка `AB.`



@темы: Планиметрия, Прогрессии, Теория чисел, Физика (тема закрыта

19:39 

Снова про углы

wpoms.
Step by step ...


Найдите углы выпуклого четырехугольника $ABCD$ такого, что $\angle ABD = 29^\circ,$ $\angle ADB = 41^\circ,$ $\angle ACB = 82^\circ$ и $\angle ACD = 58^\circ.$



@темы: Планиметрия

11:03 

Эксперты РАО единогласно одобрили проекты новых ФГОС

Холщовый мешок
Соединённые Штаты являются для всего мира совестью
А. Шевкин дополнил публикацию Эксперты РАО единогласно одобрили проекты новых ФГОС

двумя отзывами

На мой взгляд, единственным мотивом является возможность сравнивать школы и классы вместе с учителями по единым проверочным работам. Понятно, что, как и в случае с ЕГЭ, обучение математике выродится в нарешивание стандартных задач, но кого это волнует?!
Автор комментария упустил из виду проблемы, которые иногда возникают у школьников после перехода в другую школу.



подготовленные анонимными авторами (кто-эти авторы … не знает)
Собрались как-то АШ и ВБ обсудить в перерыве очередного школьно-математического съезда текст обращения в органы, сидят, обсуждают. Добрый день, СЯС! Обсуждают, ... Привет, СЯС!
Удивительно, что эти уважаемые люди не могут сопоставить очевидное - СЯС-концепцию, СЯС-реформы, СЯС-ФГОСы. Ведь дело не в альтернативно одаренном дворовом клерке, набирающем тот или иной фрагмент текста.

ПС. Интересно, какое влияние оказало участие в СЯС-компании одного молодого математика из СПб на количество чёрных шаров, поданных за него на выборах в РАН?


Дан равнобедренный прямоугольный треугольник. Точки на его боковых сторонах делят боковые стороны на равные части. Точка Е делит отрезок DC, где D - основание высоты, в отношении 1:2. Найдите сумму отмеченных углов.

@темы: Планиметрия, Образование, ГИА (9 класс)

14:24 

Дуги

wpoms.
Step by step ...


На окружности отмечены 999 точек, которые делят ее на 999 дуг единичной длины. Необходимо разместить на этой окружности `d` дуг длиной 1, 2, ..., `d` так, чтобы каждая дуга начиналась и оканчивалась в отмеченных точках и никакая из этих `d` дуг не содержалась в любой другой из этих `d` дуг. Найдите все значения `d`, для которых возможно получить описанную конструкцию.
Пояснение: Две дуги могут иметь одну или более общих точек.



@темы: Планиметрия

11:52 

На информвойне, как на информвойне

Холщовый мешок
Соединённые Штаты являются для всего мира совестью
А. Шевкин обращает внимание общественности на распространении в этих ваших интернетах недостоверной информации. Наверное можно привести и массу других примеров. Например, эту публикацию от псевдо Алексиевич. Никому нельзя верить. Мне - можно.

В прошлом году участники олимпиады имени Эйлера должны были регистрироваться на сайте euler.mccme.ru, в этом - уже на другом принадлежащем МЦНМО сайте - reg.olimpiada.ru. И в прошлом году МЦНМО не имел права заниматься обработкой персональных данных, и в этом не имеет. Так зачем менять хорошее на новое?

На рисунке изображены четыре равных треугольника, длины сторон каждого равны трём, четырём и пяти сантиметрам. Найдите длину отрезка AB.



Никогда такого не было. И вот. Школьники и учителя сетуют на слишком сложные экзамены.

Газетная статья.
www.nzherald.co.nz/nz/news/article.cfm?c_id=1&o...
Тексты заданий.
www.nzqa.govt.nz/nqfdocs/ncea-resource/exams/20...
www.nzqa.govt.nz/nqfdocs/ncea-resource/exams/20...
www.nzqa.govt.nz/nqfdocs/ncea-resource/exams/20...

@темы: ГИА (9 класс), Образование, Планиметрия

20:49 

Угол - это место, где я провёл часть своего детства

wpoms.
Step by step ...


Точка $D$ на стороне $BC$ остроугольного треугольника $ABC$ выбрана так, что $AD = AC.$ Пусть $P$ и $Q$ будут, соответственно, основаниями перпендикуляров, опущенных из $C$ и $D$ на сторону $AB.$ Известно, что $AP^2 + 3BP^2 = AQ^2 + 3BQ^2$.
Найдите величину угла $ABC.$



@темы: Планиметрия

06:56 

Война и мир

Холщовый мешок
Соединённые Штаты являются для всего мира совестью


Слева и справа находятся два города, населенные воинственными народами. Города соединены касательными дорогами. Между ними находится нейтральный город, ворота которого расположены в точках касания его стен с дорогами. Найдите расстояние от перекрестка до ближайших ворот нейтрального города, если известны размеры всех трёх городов.

@темы: Планиметрия

08:24 

Женская сборная России досрочно выиграла командный чемпионат Европы

Холщовый мешок
Соединённые Штаты являются для всего мира совестью
по шахматам.

изображение

zadachi.mccme.ru/2012/#&task10235

10235. Точка E — середина боковой стороны CD трапеции ABCD. На стороне AB отмечена точка K так, что CK ‖ AE. Отрезки CK и BE пересекаются в точке O.
а) Докажите, что CO = KO.
б) Найдите отношение оснований BC и AD, если площадь треугольника BCK составляет 9/64 площади трапеции.

Решение. а) Пусть прямые AE и BC пересекаются в точке F. Треугольники FEC и AED равны по стороне (CE = DE) и двум прилежащим к ней углам. Значит, AE = EF, т. е. BE — медиана треугольника ABF, а так как CK ‖ AF, то BO — медиана треугольника KBC, т. е. O — середина отрезка KC.


Докажите п. а) без построения точки пересечения прямых AE и BC другим способом.

@темы: Порешаем?!, Планиметрия, ЕГЭ

23:41 

Не все то золото, что блестит

wpoms.
Step by step ...
20:09 

Про треугольник

wpoms.
Step by step ...


Пусть $ABC$ --- прямоугольный треугольник и $C = 90^\circ.$ Точки $D$ и $E$ выбраны на гипотенузе AB так, что $AD = AC$ и $BE = BC.$ Точки $P$ и $Q$ лежат на $AC$ и $BC$ соответственно, при этом, $AP = AE$ и $BQ = BD.$ Пусть $M$ --- середина отрезка $PQ.$
Покажите, что $M$ --- точка пересечения биссектрис треугольника $ABC$ и найдите величину угла $AMB.$



@темы: Планиметрия

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная