Записи с темой: теория вероятностей (список заголовков)
20:59 

Про кубик

L.ego
Добрый день!
ТерВер был 8 лет назад, многое забыла, но тут постаралась вспомнить ради задачки. Помогите, пожалуйста.

Условие:
Деревянный куб покрасили зеленой краской и разрезали на 27 одинаковых маленьких кубиков. Кубики перемешали и сложили из них куб такого же размера, как изначальный. С какой вероятностью куб будет полностью зеленым? Расписать ход мыслей.

Решала так:
читать дальше

@темы: Теория вероятностей

23:28 

Встаньте дети, встаньте в круг...

All_ex
Эллипс - это круг, который можно вписать в квадрат 25х40
Коллега подбросила интересную задачку...
Внутри круга `W` радиуса `R` произвольно выбран отрезок длины `R`. Этот отрезок является диаметром второго круга `w`. Найти вероятность того, что`w` полностью находится внутри `W`.

Немного поразмыслив пришёл к такому решению...

Гложет червь сомнения... так что, если кто видит неточности или ошибки, то высказывайтесь, пожалуйста, по поводу этого варианта решения...

@темы: Теория вероятностей

11:56 

Дилетант
На плечах гигантов, на спинах электронов
Помогите с детской задачей по комбинаторике ))
Точнее, по теории вероятностей, но дело всё же в комбинаторике.
Задача такая. Есть 10 человек, которые стоят в кругу. На 4 из них надеты белые перчатки, на 6 — черные.
Какова вероятность, что никакие два человека в белых перчатках не стоят вместе.

Формула классической вероятности `P(A)=m/n`.
И вот, проблемы уже начинаются с расчетом `n`.
Если считать просто "по формуле" перестановки с повторениями, то получаем всего перестановок таких людей: `{10!}/{4!*6!}`
И еще разделим на 10 из-за того, что они стоят в кругу. Имеем: `n={9!}/{4!*6!}`.
Я здесь не уверена до конца, что так можно...

В учебнике написан вот такой способ расчета `n`.
Ставим в круг 6 человек в черных перчатках (это можно сделать единственным способом: просто поставить). Расставляем в промежутки 4 человека в белых перчатках. Имеем: 6 способов для расстановки первого, 7 для второго, 8 для третьего, 9 для четвертого. И всё это разделим на 4!, так как они неразличимы.
Получим:
`n={6*7*8*9}/{4!}={9!}/{4!*5!}`
Т.е. с моим ответом не сходится.
Хорошо, но если мы сделаем наоборот: сперва расставим белых, потом черных?
Тогда имеем по той же логике:
`n={4*5*6*7*8*9}/{6!}={9!}/{3!*6!}`

Что я делаю не так?

@темы: Теория вероятностей, Комбинаторика

11:18 

Две случайных величины на отрезке

Добрый день! У меня есть задача, могли бы проверить моё решение.
Задача:
На отрезке `[0;1]` в точках `x,y` независимо выбранных из равномерного распределения, находятся два детектора элементарных частиц. Детектор засекает частицу, если она пролетает на расстоянии не более `1/3` от него. Известно, что поля восприятия покрывают весь отрезок. С какой вероятностью `y >= 5/6` ?
Моё решение:
1) Я нарисовал в квадрате 1х1 множество точек, которые удовлетворяют условию "детекторы покрывают весь отрезок"

2) Далее надо найти условную вероятность: Р(y > 5/6 | покрыт весь отрезок). Я буду искать эту вероятность как отношение благоприятных исходов ко всевозможным. Я полагаю, что априори мы попали в закрашенную область, значит в знаменателе стоит площадь двух закрашенных треугольников: `S = 2 * 1/3 * 1/3 * 1/2`. Теперь числитель. Я взял пересечение y >= 5/6 и двух закрашенных треугольников, получается один треугольник, площадь которого равна `1/6*1/6*1/2`
3) Нахожу их отношение, получаю `0.125`

@темы: Теория вероятностей

12:10 

Найдите стационарное распределение цепи Маркова, заданной переходными вероятностями p_ij
р00=1, рi,i+1=0,3, , pi,i-1=0,7, , pNN =0,7.


Я составила матрицу вероятностей. Но в строке N сумма вероятностей должна быть единица. У меня же в этой строке лишь одна 0,7.
Условие рi,i+1=0,3 выполняется только до N-1 строки....

И потом, решая систему, все вероятности у меня получаются равными нулю. Чего быть не может, так как должно выполняться условие нормировки.
Подскажите, пожалуйста, где у меня ошибка (конечно, видимо, ошибка как раз в построении матрицы)

@темы: Теория вероятностей

11:39 

Цепи Маркова

Найдите матрицу переходных вероятностей для Марковских цепей, описывающие следующий процесс:
в начальный момент времени 8 шаров размещены в двух урнах А и В поровну. На каждом шаге из общего числа 8 шаров случайно выбирается один шар и помещается с вероятностью 0,3 в урну А и с вероятностью 0,7 в урну В. Состояние цепи при каждом испытании—число шаров в урне А.


Мои рассуждения:
Цепь может находиться в 9-ти состояниях: 1 состояние - в А 1 шар; 2 состояние - в А 2 шара; 3 состояние - в А 3 шара;......; состояние 8 - в А 8 шаров; 9 состояние - в А 0 шаров.
Значит в начальный момент времени (транспонированный) вектор распределения имеет вид: (0, 0, 0, 0.3, 0, 0, 0, 0, 0.7)


Но я не уверена, что состояний и правда будет 9...

@темы: Теория вероятностей

15:40 

Теория принятия решений(теория вероятностей)

blackhawkjkee
Здравствуйте.
Уже несколько дней не могу разобраться как начать решать следующую задачу:

В двоичной системе связи передача информации происходит с помощью двух кодовых посылок, соответствующих двум сообщениям `s_0` и `s_1` . Потребитель информации принимает два сигнала `y_0` и `y_1` и декодирует их в символы «0» и «1» соответственно. Вероятности передачи в канал сообщений `s_0` и `s_1` равны `p (s_0 ) = 0,3` и`p (s_1 ) = 0,7`.
Наличие помех в канале связи, приводящих к искажению информации, характеризуется условными вероятностями:
`p ( y_0 | s_0 ) = p ( 0 | s_0 ) ; p ( y_1 | s_0 ) = p ( 1 | s_0 ) ;`
`p( y_0 | s_1 ) = p ( 0 | s_1 ) ; p( y_1 | s_1 ) = p ( 1 | s_1 ) .`
Определить алгоритм принятия решения и вычислить вероятность ошибки.

По примеру в методичке я сначала должен сформулировать гипотезы:
Пусть гипотеза `H_0` - передано сообщение `s_0`
Гипотеза `H_1` - передано сообщение `s_1`.

Тогда, пусть потребитель информации принимает сигнал `y_0`, которому присваивается символ «0». Находим вероятность этого события по формуле полной вероятности:
`p(y_0) = p(0) = P(H_0) P(0 | H_0) + P(H_1) P(0 | H_1) = 0,21`

Если даже это и верно(то что я написал выше), то дальше я не могу понять что делать.
Фотографии решения задачи из методички могу приложить, если понадобятся.
Заранее спасибо!

@темы: Теория вероятностей

13:07 

Теория вероятностей. Характеристические функции

IWannaBeTheVeryBest
Вопрос у меня по теореме, я немного не понял ее.
"Комплекснозначная функция `f(t)` действительной переменной `t` является х.ф. тогда и только тогда, когда
(i) `f(t)` является неотрицательно определенной
(ii) `f(0) = 1`"
И если второе условие я могу понять, то как понять первое? Разве можно говорить о комплекснозначных функциях, что они могут быть положительно или отрицательно определены? По определению такие функции возвращают комплексные числа. Они не бывают отрицательными или положительными. Если я конечно верно понимаю определение "положительно определенная функция". Это же функция, которая принимает положительные значения? Если нет, то я что-то недоучил когда-то видимо)

@темы: Теория вероятностей

22:59 

Комбинация нормальных CВ

В ходе решения задачи столкнулся с некоторым недопониманием в случае сложения двух нормальных СВ. А именно следующее: Есть две СВ `X` и `Y`, обе распределены нормально. Дальше объявляется новая CВ `Z = 0.5X+0.5Y`. И теперь возникает вопрос: а верно ли, что `0.5*f_X(10)+0.5*f_Y(10) = f_Z(10)`? У меня почему-то получается, что это неверно

@темы: Теория вероятностей

13:50 

Оценить с помощью неравенства Чебышева_2

IWannaBeTheVeryBest
Оценить сверху `P{|\eta_n/n - p^2| > \epsilon}`
если `\xi_1, \xi_2, \dots, \xi_{n + 1}` - результаты n + 1 испытаний схемы Бернулли (`P{\xi_i = 1} = p, P{\xi_i = 0} = 1 - p`)
а `\eta_n` - случайная величина, равная числу таких `i`, что `\xi_i = \xi_{i + 1} = 1`
Ну я так понимаю, что для начала надо рассмотреть хотя бы первые два испытания схемы Бернулли. Вероятность того, что обе величины будут равны 1 = `p^2`.
`\eta_n = \eta_{1,2} + \eta_{2,3} + \dots + \eta_{n,n+1}`
Так как все `\eta_{i, i+1}` распределены одинаково, то получается, что
`E[\eta_n] = E[\eta_{1,2}] + E[\eta_{2,3}] + \dots = np^2`
`E[\eta_n/n] = p^2`
Я думаю, что так как в исходной задаче вычитаемое под модулем как раз `p^2`, то я вроде как иду по верному пути.
Дальше
`D[\eta_n] = D[\eta_{1,2}] + D[\eta_{2,3}] + \dots = n * (E[\eta_{1,2}^2] - E^2[\eta_{1,2}]) = n(p^2 - p^4)`
`D[\eta_n/n] = (p^2(1 - p)(1 + p))/n`
`P{|\eta_n/n - p^2| > \epsilon} <= (p^2(1 - p)(1 + p))/(n\epsilon^2)`
Вроде так должно быть. Но в ответе
`(p^2(1 - p)(1 + 3p))/(n\epsilon^2)`
В принципе без разницы какой ответ в задачнике. Главное, чтобы решение было верное.

@темы: Теория вероятностей

16:37 

Оценить с помощью неравенства Чебышева

IWannaBeTheVeryBest
Оценить сверху неравенство `P{|\eta_n/n - 3.5| > \epsilon}, \epsilon > 0`, если
`\eta_n` - случайная величина равная сумме очков при `n` подбрасываниях игральной кости.
Не могу понять, как так получается, что сверху это оценено как `8.75/(n\epsilon^2)`
То есть каким образом здесь вообще ищется дисперсия и как здесь определено матожидание, если подбрасываний n штук. Или мне нужно сначала определить это n? то есть сверху это оценивается как `(D[\eta_n/n])/(\epsilon^2)`

@темы: Теория вероятностей

10:37 

Имеется 1000 параллелепипедов, каждая из сторон которых может принимать значения 0,5 или 1 с вероятностями 0,3 и 0,7 соответственно. С какой вероятностью суммарный объем всех параллелепипедов будет в пределах от 580 до 605?

@темы: Теория вероятностей

11:45 

Статистический анализ, проведенный по заказу авиакомпании, показал, что распределение веса (в кг) пассажира авиарейса с грузом хорошо описывается плотностью распределения
p(x)=Ax^3(150–x), x принадлежит интервалу (0,150).
Грузоподъемность самолета составляет 35 тонн. При посадке зарегистрировано 275 пассажиров. Какой коммерческий груз (в кг) можно дополнительно везти этим рейсом, чтобы вероятность перегрузки составила не более 0,2%.

@темы: Теория вероятностей

11:40 

1.Посетитель тира платит за выстрел 15 рублей. При попадании в девятку получает премию 20 рублей, при попадании в десятку получает премию 40 рублей. Если стрелок не попадает ни в девятку, ни в десятку, то премия ему не выплачивается. Вероятности попадания в девятку, десятку и промаха равны 0,2, 0,05 и 0,75 соответственно. Число посетителей равно 350. Найдите:
А) вероятность убытка у владельца тира;
Б) вероятность того, что суммарная прибыль окажется больше 500 рублей.


У меня есть предположение, что задачу надо решать с помощью Центральной теоремы и Муавра-Лапласа. Но как применить всё это, не понимаю.

@темы: Теория вероятностей

06:17 

Собачьи будки

Холщовый мешок
Соединённые Штаты являются для всего мира совестью
После выполнения задания в Британию вернулись 5 шпионов. На торжественном приеме в Портон-Дауне им случайно сделали инъекции смертельных препаратов пяти различных видов, каждому одного вида. Известно, что пять антидотов находятся в пяти различных собачьих будках, но неизвестно в какой будке находится какой антидот. Каждый антидот помогает только от одного препарата. Шпионы распределяют между собой пять конвертов, добираются до указанного в выбранном конверте места, находят антидот и, надеясь на лучшее, применяют его. Найдите вероятность того, что выживет ровно один шпион.


@темы: Теория вероятностей, ГИА (9 класс)

15:04 

Математическое ожидание

Добрый день! Вчера прошел очный тур "Я-профессионал". У меня не получилось решить одну задачу, но интересно знать как её решать.
Задача такая: "Для предстоящего чаепития фрёкеи Бок приготовила шесть различных сортов пирожных и положила пирожные каждого сорта на отдельную тарелку. Каждую минуту Карлсон подлетает к случайным образом выбранной тарелке и берёг с неё ровно одно пирожное. Сколько в среднем минут пройдёт до тех нор. пока у Карлсона не окажется два одинаковых пирожных?"
Я попробовал решить так: определяем CВ X = "ровно на i-ой попытке два пирожка совпали". Тогда P(1) = 0, P(2) = 1/6. А дальше чуть сложнее. P(3) - я подумал, что для того, чтобы ровно на третьем шаге совпали два пирожка надо, чтобы на втором шаге не совпали, то есть P(3) = (1-P(2)) * 2/6 . По аналогии P(4) = (1-P(2))*(1-P(3))*3/6. Домой пришел - посчитал, в сумме это всё дает больше единицы, а значит где-то ошибся. Могли бы помочь, где я ошибаюсь?

@темы: Теория вероятностей

18:37 

Вероятность разорения в статической схеме страхования

Добрый вечер! Помогите, пожалуйста, с следующими задачами (хотя бы с чего начать, или литературу, где решаются подобные задачи) Заранее спасибо!

@темы: Теория вероятностей

19:08 

Теория вероятностей

IWannaBeTheVeryBest
В урне 15 белых, 10 черных, 15 синих и 10 красных шаров. Вынимают два шара. Найти вероятность того, что это будут белый и красный или белый и синий шары.

Вообще найти вероятность того, что мы достали белый и красный шары я могу. Также можно посчитать вероятность того, что это будут белый и синий шары. А как мне найти вероятность того, что это будет "то или другое"? Тем более, что в первом и во втором случае есть белый шар.
Какая это тема из теории вероятностей? Потом почитаю, повторю.

@темы: Теория вероятностей

15:33 

Теория массового обслуживания

Здравствуйте!

Столкнулся со следующей задачей:

Коммутационная система колл-центра позволяет выстраивать неограниченную по количеству очередь клиентов, но имеет ограничение по времени ожидания в очереди: после истечения времени Т соединение с заявкой, ожидающей обслуживания, обрывается. Из-за загруженности колл-центра в данный час при помощи указанного правила принудительно удаляются из очереди в среднем 16% клиентов. Какова вероятность, что клиент проведет в очереди время, не превышающее 4Т?

Не совсем понимаю вопрос. Если после истечения времени Т соединение с заявкой обрывается, то как клиент может прождать на линии 2Т или 3Т?

Мне раньше приходилось решать задачи по ТМО, где просто применялась формула Пуассона. Но как ее применить здесь, не понимаю...

Перечитал массу литературы по ТМО, еще больше запутался.

Прошу помощи.

@темы: Теория вероятностей

09:36 

Метод максимального правдоподобия

Добрый день!
Задание следующее:

Результаты 100 независимых наблюдений представлены в виде вариационного ряда:

`x_i` 1 2 3 4 5 6 7

`n_i` 5 10 20 35 10 15 5

Считая, что случайная величина Х распределена по закону с плотностью
`f(x)=2a^2xe^(-a^2x^2)`, `x>=0`

Найти оценку параметра `a` по методу максимального правдоподобия.

Раньше я решал подобные задачи, но в них была только дискретная случайная величина `x_1, x_2, ..., x_k`.
В таком случае функция правдоподобия была равна

`L(x_1,...,x_k,a)=f(x_1,a)...f(x_k,a)`.

Но здесь мы имеем вариационный ряд. Интуиция подсказывает, что должно быть так:

`L(n_1x_1,...,n_kx_k,a)=f(n_1x_1,a)...f(n_kx_k,a)`.

Верны ли мои догадки?

@темы: Теория вероятностей

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная