• ↓
  • ↑
  • ⇑
 
Записи с темой: линейная алгебра (список заголовков)
14:01 

Линейный оператор

Является ли линейным оператором, действующим на пространстве
тригонометрических многочленов вида a + b cos x + c sin x, отображение
I : a + b cos x + c sin x -> интеграл от 0 до пи
sin(x + y)(a + b cos y + c sin y)dy?

@темы: Линейная алгебра

18:02 

Линейная алгебра

Добрый день! Вот моё задание.

Дано линейное простраство L, которую образуют полиномы с помощью реальных коэффицентов, степень которых не превышает 2.
Базис e пространства L: e1=1;e2=x;e3=x^2, а также отображение А в этом пространстве: A(P(x))=P(x+3).
Доказать, что А – линейный оператор. Написать линейного оператора А матрицу в базисе е: Ае.

----
Не могли бы подкнуть идею, как док-ть, что А - линейный оператор?

@темы: Линейная алгебра

12:37 

Линейная алгебра

шикарно
Закрой мне руками глаза, если будет восход, кидай свои камни ко мне в огород.
Имеется задание:
В пространстве R^4 определена гиперповерхность, которой принадлежат только те векторы, координаты которых в стандартном базисе (x1; x2; x3; x4) удовлетворяют уравнению x1^2 + x2^2 - x3^2 - x4^2 = 1.
Найти уравнение этой гиперповерхности в базисе f: f1 = (1;1;1;1), f2 = (1;1;-1;-1), f3 = (1;-1;1-;1), f4 = (1;-1;-1;1) в координатах (y1; y2; y3; y4).

Не имею понятия с чего начать решать и как подступиться к заданию.
Может быть подскажете ход действий и посооветуете что-то?

@темы: Линейная алгебра

19:45 

Найти матрицу оператора

Добрый день!
Задача: найти матрицу оператора поворота трехмерного пространства на угол `2pi/3` вокруг прямой, заданной в прямоугольной системе координат уравнениями `x_1=x_2=x_3`, в базисе из единичных векторов осей координат.

Мое решение:
Перейдем к новому базису `f_1=((1),(0),(-1)), f_2=((1),(-2),(1)), f_3=((1),(1),(1))`.
Матрица оператора в новом базисе :
`A = 1/2*((-sqrt(3),-1,0),(1,-sqrt(3),0),(0,0,2))`
Матрица перехода:
`T = ((1,1,1),(0,-2,1),(-1,1,1))`.
Обратная ей:
`T^(-1) = -1/6*((-3,0,3),(-1,2,-1),(-2,-2,-2))
Тогда матрица оператора в стандартном базисе равна `TAT^(-1)`.
Ответ указан вообще другой :
`((0,0,1),(1,0,0),(0,1,0))` и `((0,1,0),(0,0,1),(1,0,0))`.
Как я понимаю в ответе 2 матрицы, потому что не сказано в каком направлении происходит вращение(по часовой или против часовой).
Я же рассматривал только случай вращения против часовой, но матрица в любом случае не получается такой как в ответе.
Подскажите, пожалуйста, что я делаю не так?

@темы: Аналитическая геометрия, Векторная алгебра, Матрицы, Линейные преобразования, Линейная алгебра

20:43 

Найти матричную экспоненту.

IWannaBeTheVeryBest
`A=((4, -2, 2), (-5, 7, -5), (-6, 6, -4))`
Найти `f(A) = 2^A`
Вот в данном случае неприятно то, что 2 стоит в основании. Хотя при разложении в ряд Тейлора там будут лишь добавляться множители `ln2` от дифференцирования.
Вообще, я знаю, как получать матричную экспоненту для Жордановой клетки. Но в данном случае у нас матрица приводится к диагональной. То есть
`2^J = ((2^3, 0, 0), (0, 2^2, 0), (0, 0, 2^2))`
Потом, если применять логику алгоритма с экспонентой, а не с двойкой, должно быть так
`2^A = S * 2^J * S^(-1)`
где S - матрица, составленная из собственных и присоединенных векторов матрицы А
Хотел бы вообще узнать, как действовать в общем случае. Скажем если Жорданова форма матрицы
`J = ((a_1, 1, 0, 0),(0, a_1, 0, 0),(0, 0, a_2, 0), (0, 0, 0, a_3))`
Для каждой из этих клеток я знаю как построить экспоненту. Но тут 3 клетки. Как их объединить? Так?
`e^(Jt) = ((e^(a_1), te^(a_1), 0, 0),(0, e^(a_1), 0, 0),(0, 0, e^(a_2), 0), (0, 0, 0, e^(a_3)))`
Ну t можно принять за 1 и будет то что надо.

@темы: Линейная алгебра

13:06 

Подпространства

Yoon Bum
Не жалей меня, будь жесток. Моя кровь - томатный сок. ©
Добрый день.
Есть задача по линейной алгебре:

Является ли множество L={(x_1,x_2,x_3)} векторов заданного вида линейным подпространством в R^3? Если да, то найти базис и размерность этого подпространства. Дополнить базис подпространства L до базиса всего пространства R^3. Выписать матрицу перехода от канонического базиса пространства R^3 к построенному базису.
а) (a-b, 2a+b, 2a-3b)
б) (a-3b, 2+b, 2a-3b)

Собственно, проблема в том, что я понятия не имею, с чего начать. Да, я уже погуглил и не нашёл ничего подобного. Особенно интересует первый пункт, является ли линейным подпространством.

@темы: Векторная алгебра, Линейная алгебра

10:31 

Жорданов базис и минимальный полином

IWannaBeTheVeryBest
`A = ((4, -2, 2),(-5, 7, -5),(-6,6,-4))`
`B(a) = A - a*E`
`det B = (3 - a)(2 - a)^2`
Определим минимальный полином. Он будет в виде
`\mu = (3 - a)(2 - a)^l`
`1<= l <= 2` (ну короче или 1 или 2 :))
`rang B(2)^i = r_i`
`r_0 = 3; r_1 = 1 = r_2`
Определим порядки Жордановых клеток для этого собственного числа по формуле
`m_i = r_{i-1} - 2r_{i} + r_{i + 1}`, где `i` - порядок Жордановой клетки, `m_i` - число таких клеток
`m_1 = 3 - 2 + 1 = 2`
`m_2 = 1 - 2 + 1 = 0`
Так как `l` совпадает с максимальным порядком Жордановой клетки, то `l = 1`.
Жорданов базис.
1) Находим степень `q`, начиная с которой ранг матрицы перестает падать. `q = 1`
2) Рассмотрим базис ядра `N_1`, решая `B*X = 0`
`B = ((2, -2, 2), (-5, 5, -5), (-6, 6, -6))`
Размерность `N_1 = 2`. Базис `(1, 0, -1)^T`; `(0, 1, 1)^T`
А дальше предполагаю, что надо просто найти присоединенный вектор. Он и будет третьим в Жордановом базисе. Верно?

@темы: Линейная алгебра

19:02 

Алгебра 10 класс

Подскажите, пожалуйста, как из уравнения 16x(x+1)(x+2)(x+3)=9 получить (2x+3)^2(4x^2+12x-1)=0?

@темы: Линейная алгебра

10:46 

Матрица сопряженного отображения

Здравствуйте! Помогите, пожалуйста, найти ошибку в решении. Мой ответ не сходится с ответом в задачнике :upset:
P. S. Забыла написать, что пространства евклидовы.

Пусть `A` - линейное отображение пространства `R^3` в `R^2`, заданное в базисах (1,1,1), (1,0,1), (0,1,1) и (1,2), (0,1) матрицей `((1,0,1),(2,1,3))`. Найти матрицу сопряженного отображения в тех же базисах.


@темы: Линейная алгебра, Матрицы

17:48 

Матрица проектирования

IWannaBeTheVeryBest
Задача как бы обобщает предыдущую. Ну например такая.
Определить матрицу проектирования пространства `E_3` на подпространство `L: -20x=15y=12z` параллельно пространству `M:2x+3y-z=0`
Верно ли будет выбрать базис на плоскости `f_1, f_2` плюс выбрать вектор на прямой `f_3`. Таким образом получить другой базис.
Дальше смотрим, куда переходят наши базисные вектора, составляя линейные комбинации из векторов `f` (короче говоря выражаем вектора `e` через базис `f`). Получаем коэффициенты и пишем в матрицу.
Правда не уверен что матрица получится квадратной, ведь у нас вектора базиса `f` линейно зависимы. Или это нормально, что матрица прямоугольной получится?

@темы: Линейная алгебра

19:50 

Вычислить матрицу ортогонального проектирования

IWannaBeTheVeryBest
Вычислить матрицу ортогонального проектирования пространства `E_3` на подпространство `L`, если `L` - плоскость, натянутая на вектора
`x = (-1,1,-1)`
`y = (1,-3,2)`
Верно ли я понимаю, что задачу можно переформулировать как поиск матрицы оператора проектирования `P:E_3 -> L`?
Ну вот по сути, когда я находил раньше находил матрицы операторов, я смотрел на действие оператора на базисных векторах, смотрел какими они становятся в `L`, и записывал их в матрицу. Ну в общем просто записывал образы базисных векторов в матрицу и все.
Только тут плоскость какая-то неудобная. В ней лежат все вектора вида `ax + by`. То есть каждый из базисных векторов должен стать представимым в виде данной линейной комбинации. Но я не могу понять, куда конкретно они будут переходить? Вот если бы это была просто какая-то плоскость типа `z = 0`, то я бы взял трехмерную единичную матрицу и занулил соответствующую единицу.
Может надо как-то развернуть сначала систему координат как-то, чтобы получилась данная плоскость, потом подействовать на нее обычной матрицей проектирования и повернуть обратно? Могу найти ортогональный вектор двум данным `z`, затем перевести `x, y, z` в `e_1, e_2, e_3` соответственно, получить матрицу этого преобразования, воспользоваться стандартной матрицей проектора и воспользоваться обратным преобразованием. Правда заморочек много. Может проще можно?

@темы: Линейная алгебра

23:07 

Внешнее произведение q-форм

IWannaBeTheVeryBest
Вообще это произведение определяется как тензорное произведение этих форм, альтернированных по всем индексам и домноженное на `(p + q)!/(p!*q!)`
Задание такое. Найти внешнее произведение форм, заданных строками
`C_1 = (1,1,2,2)`
`C_2 = (1,1,1,3)`
`C_3 = (1,1,1,2)`
Ну, насколько я понял, каждая из этих строк является тензором типа `(0,1)`. Если я найду тензорное произведение двух из них, то я автоматом получу тензор типа `(0,2)`
Альтернирование и домножение на константу не меняет типа тензора. Соответственно, когда я домножу полученный тензор на третью внешнюю форму тензорно, то это будет уже тензор типа `(0,3)`. Однако результатом перемножения этих форм является тоже строчка `1xx4`. Это как?

@темы: Линейная алгебра

16:39 

Альтернирование тензора

IWannaBeTheVeryBest
Как производится альтернирование `a_{[k l]}^{[ij]}` тензора `a_{k l}^{ij}`? Я правильно понимаю, что сначала нужно получить тензор `a_{k l}^{[ij]}`, а потом уже его альтернировать по нижним индексам и получить `a_{[k l]}^{[ij]}`? Просто я решил таким образом поступить, а ответ не сошелся.
Тензор `a_{kl}^{ij} = `

Извините, что картинкой. Просто такую "байду" формулой изобразить будет сложно, я думаю.
Решаю так. Сначала альтернирую по верхним индексам. Там где совпадают `ij`, будет 0. Не 0 будут во всех слоях на побочных диагоналях.
Ну логика простая
1) `i = k = l = 1; j = 2`
`a_{11}^{[12]} = 1/2*(a_{11}^{12} - a_{11}^{21}) = 3`
По логике
`a_{11}^{[21]} = -3`
Дальше просто повторяю эти действия для каждого слоя. То есть просто вычитаю элементы на побочной диагонали, ставлю это число на место `12` и то же число с обратным знаком на место `21`.
2) `a_{22}^{[12]} = -a_{22}^{[21]} = 1/2*(a_{22}^{12} - a_{22}^{21}) = -4`
Таким образом я определил значения слоев `a_{11}^{ij}` и `a_{22}^{ij}`
В итоге у меня получился тензор, где
`a_{12}^{ij} = a_{11}^{ij}`
`a_{21}^{ij} = a_{22}^{ij}`
Назовем его тензором `b_{kl}^{ij}`
Вот у меня скорее всего где-то здесь уже ошибка. Дело в том, что
`b_{[12]}^{12} = -b_{[21]}^{12} = 1/2*(b_{12}^{12} - b_{21}^{12}) = 1/2*(3 - (-4)) = 7/2`
Получилось у меня `+-7/2` на побочной диагонали двух слоев. А в ответах там `+-1/2` на тех же местах, и немного с другим расположением знаков.

@темы: Линейная алгебра

18:59 

Интерполяция многочленом

Здравствуйте!
Вопрос такой - когда нам дана таблица значений функций, мы можем найти интерполяционный полином наименьшей степени методом Лагранжа или Ньютона.
Но что делать, если в качестве известных данных, нам даны не только значения функции, но и ее производной?
Понятно, что можно написать искомый многочлен в искомом виде, подставить все известные точки и получить систему линейных уравнений.
Но нет ли более "красивого" способа? Например, в методе Ньютона мы вычисляем коэффициенты последовательно и насколько я понимаю при добавлении новой точки, мы просто считаем еще одно значение(и старые при этом не меняются).
Например, как наиболее рационально решить какую-то такую задачу:
`f(x_0) = y0, f'(x_0) = y1, f(x_1) = y2, f'(x_1)=y3`.
Спасибо

@темы: Линейная алгебра, Системы линейных уравнений, Теория многочленов

19:52 

Угол между векторами в евклидовом пространстве

Здравствуйте! Посмотрите, пожалуйста, нет ли ошибок.

Нужно было найти угол между векторами (-2, -1, 3, -2) и (-3, 1, 5, 1) евклидова пространства R4.

читать дальше

@темы: Линейная алгебра

14:40 

Линейная алгебра

Найти координаты вершин треугольника,если даны координаты одной из его вершины А(1;2) и уравнения его медиан: 20х-7у-22=0 , 4х+у-22=0.....ПРОШУ

@темы: Аналитическая геометрия, Линейная алгебра

13:26 

Привести матрицу к диагональному виду

IWannaBeTheVeryBest
Я тут решил вспомнить немного материал из прошлого. Как привести матрицу к диагональному виду? Ну скажем такую
`A = ` $\left(\begin{array}{c c}1 & 2 \\ 3 & 4 \end{array}\right)$
Пусть передо мной задача найти n-тую степень матрицы. Очевидно, ее надо привести к диагональному виду и возвести каждый элемент на диагонали в n-тую степень. Можно использовать алгоритм приведения ее к Жордановой форме. Но почему ее нельзя свести к диагональному виду путем элементарных преобразований строк? Скажем, если `L_n` - это n - тая строка, то `L_2 - 3*L_1` и затем `L_1 + L_2`? И будет матрица
`A' = ` $\left(\begin{array}{c c}1 & 0 \\ 0 & -2 \end{array}\right)$
В чем подвох? Я похоже не понимаю, что такое диагональный вид матрицы :D

@темы: Линейная алгебра

15:07 

Норма пространства

IWannaBeTheVeryBest
Можно ли ввести норму следующим образом
`X = C[a, b],` `\left \|| x \right \||`` = |max_{t \in [a, b]} x(t)|`
Одна из аксиом нормы
`\forall x \in X : ``\left \|| x \right \||` `>= 0, \left \|| x \right \|| = 0 <=> x = 0`
Я думаю, что нельзя. Ну например `x(t) = sin(t) - 1,` `t \in [0; pi]`
`x \neq 0`, однако норма = 0.
Это верно? Просто вроде как другие аксиомы нормы тут будут выполнены в силу аксиом модуля и поэтому к другим аксиомам не прицепится.

@темы: Линейная алгебра, Функциональный анализ

17:52 

Вычислить определитель

Здравствуйте!
Готовлюсь к потоковой контрольной, возникли проблемы с решениями нескольких номеров.
читать дальше
Как я понимаю, здесь легче всего домножить матрицу на какую-то другую и воспользоваться свойством определителя произведения матриц. Но не могу понять, какая матрица здесь нужна.
Что делать со следующим заданием вообще не знаю.
читать дальше
Думал разбить его на 2 определителя, но ничего дельного не вышло. При этом ответ немного похож на определитель Вандермонда, что окончательно меня сбило.
Буду благодарен любой подсказке!

@темы: Матрицы, Линейная алгебра

22:50 

Тензоры

IWannaBeTheVeryBest
Я уже задавал здесь вопрос по тензорам, но видимо он оказался слишком длинным. Можно вот так.
Почему линейное преобразование является тензором типа/валентности (1, 1)?
Вот что сказано в книге по этому поводу

Про двумерную матрицу ясно. Поэтому и ранг тензора, если я верно выражаюсь, равен 2 (1 + 1).
Как преобразование элементов матрицы преобразования при переходе от базиса к базису должно мне сказать, что это тензор именно (1, 1), а не (2, 0) или (0, 2)?

@темы: Линейная алгебра

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная